Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems

ContentsIntroduction § 1. The concept of a set of determining functionals § 2. The completeness defect of a set of functionals § 3. Estimates for the completeness defect in Sobolev spaces § 4. Determining functionals for semilinear parabolic equations § 5. Determining functionals for equations of second order in time § 6. On boundary determining functionals Bibliography

[1]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[2]  I. Chueshov,et al.  On the finiteness of the number of determining elements for von Karman evolution equations , 1997 .

[3]  I. Chueshov,et al.  Global attractors for a class of retarded quasilinear partial differential equations , 1995 .

[4]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[5]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .

[6]  Keith Promislow,et al.  Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations , 1991 .

[7]  I. Chueshov A remark on sets of determining elements for reaction-diffusion systems , 1998 .

[8]  Igor Chueshov,et al.  Global attractors for non-linear problems of mathematical physics , 1993 .

[9]  I. Chueshov On a certain system of equations with delay, occurring in aeroelasticity , 1992 .

[10]  M. Marion,et al.  Inertial manifolds associated to partly dissipative reaction-diffusion systems , 1989 .

[11]  V. V. Chepyzhov,et al.  Attractors of non-autonomous dynamical systems and their dimension , 1994 .

[12]  Igor Kukavica,et al.  On the number of determining nodes for the Ginzburg-Landau equation , 1992 .

[13]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[14]  Shui-Nee Chow,et al.  Invariant manifolds for flows in Banach spaces , 1988 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[16]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[17]  I. D. Chueshov On a construction of approximate inertial manifolds for second order in time evolution equations , 1996 .

[18]  O. Ladyzhenskaya,et al.  A dynamical system generated by the Navier-Stokes equations , 1975 .

[19]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[20]  Non-linear oscillations of a plate in a flow of gas , 1996 .

[21]  O. Ladyzhenskaya On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations , 1987 .

[22]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[23]  I. Chueshov,et al.  The finiteness of determining degrees of freedom for the quasi-geostrophic multi-layer ocean model , 2000 .

[24]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[25]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[26]  Irena Lasiecka,et al.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.

[27]  C. Foias,et al.  Determining nodes for the Kuramoto-Sivashinsky equation , 1995 .