Enhancing CFD predictions in shape design problems by model and parameter space reduction

In this work we present an advanced computational pipeline for the approximation and prediction of the lift coefficient of a parametrized airfoil profile. The non-intrusive reduced order method is based on dynamic mode decomposition (DMD) and it is coupled with dynamic active subspaces (DyAS) to enhance the future state prediction of the target function and reduce the parameter space dimensionality. The pipeline is based on high-fidelity simulations carried out by the application of finite volume method for turbulent flows, and automatic mesh morphing through radial basis functions interpolation technique. The proposed pipeline is able to save 1/3 of the overall computational resources thanks to the application of DMD. Moreover exploiting DyAS and performing the regression on a lower dimensional space results in the reduction of the relative error in the approximation of the time-varying lift coefficient by a factor 2 with respect to using only the DMD.

[1]  Gianluigi Rozza,et al.  On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis , 2020, ArXiv.

[2]  Izabel Pirimai Aguiar,et al.  Dynamic Active Subspaces: a Data-Driven Approach to Computing Time-Dependent Active Subspaces in Dynamical Systems , 2018 .

[3]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[4]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[6]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[7]  Johan Larsson,et al.  Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet , 2014, J. Comput. Phys..

[8]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[9]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[10]  O. Amoignon,et al.  Mesh Deformation using Radial Basis Functions for Gradient-based Aerodynamic Shape Optimization , 2007 .

[11]  Gianluigi Rozza,et al.  Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition , 2018, 1803.07368.

[12]  Gianluigi Rozza,et al.  Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives , 2016 .

[13]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[14]  Gianluigi Rozza,et al.  A reduced order variational multiscale approach for turbulent flows , 2018, Advances in Computational Mathematics.

[15]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[16]  Gianluigi Rozza,et al.  Efficient Reduction in Shape Parameter Space Dimension for Ship Propeller Blade Design , 2019, ArXiv.

[17]  Soledad Le Clainche,et al.  Flow around a hemisphere-cylinder at high angle of attack and low Reynolds number. Part II: POD and DMD applied to reduced domains , 2015 .

[18]  Gianluigi Rozza,et al.  An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment , 2018, 1801.06369.

[19]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[20]  Gianluigi Rozza,et al.  PyDMD: Python Dynamic Mode Decomposition , 2018, J. Open Source Softw..

[21]  Jan S. Hesthaven,et al.  Reduced order modeling for nonlinear structural analysis using Gaussian process regression , 2018, Computer Methods in Applied Mechanics and Engineering.

[22]  F. Bos,et al.  Radial basis function based mesh deformation applied to simulation of flow around flapping wings , 2013 .

[23]  A. Pinkus,et al.  Fundamentality of Ridge Functions , 1993 .

[24]  Gianluigi Rozza,et al.  Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[25]  G. Rozza,et al.  Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.

[26]  Clarence W. Rowley,et al.  Online dynamic mode decomposition for time-varying systems , 2017, SIAM J. Appl. Dyn. Syst..

[27]  Juan J. Alonso,et al.  Active Subspaces for Shape Optimization , 2014 .

[28]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[29]  Karen Willcox,et al.  Multifidelity Dimension Reduction via Active Subspaces , 2018, SIAM J. Sci. Comput..

[30]  Gianluigi Rozza,et al.  A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems , 2020, ArXiv.

[31]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[32]  Gianluigi Rozza,et al.  Data-Driven POD-Galerkin Reduced Order Model for Turbulent Flows , 2019, J. Comput. Phys..

[33]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[34]  Paul G. Constantine,et al.  Python Active-subspaces Utility Library , 2016, J. Open Source Softw..

[35]  G. Rozza,et al.  An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics , 2018, 1810.12364.

[36]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[37]  Zhuyin Ren,et al.  Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs , 2018 .

[38]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[39]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[40]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[41]  Stefan M. Wild,et al.  Sequential Learning of Active Subspaces , 2019, J. Comput. Graph. Stat..

[42]  Stephen Pankavich,et al.  Mathematical analysis and dynamic active subspaces for a long term model of HIV. , 2016, Mathematical biosciences and engineering : MBE.

[43]  Gianluigi Rozza,et al.  Kernel‐based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method , 2020, International journal for numerical methods in engineering.

[44]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[45]  Gianluigi Rozza,et al.  A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces , 2019 .

[46]  A. Strauß Theory Of Wing Sections Including A Summary Of Airfoil Data , 2016 .

[47]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[48]  Gianluigi Rozza,et al.  Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces , 2019, 1905.05483.

[49]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[50]  Samuel Friedman,et al.  Adaptive Dimensionality Reduction for Fast Sequential Optimization With Gaussian Processes , 2019, Journal of Mechanical Design.

[51]  Ionel M. Navon,et al.  An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD , 2015 .

[52]  Soledad Le Clainche Martínez,et al.  Higher Order Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[53]  Soledad Le Clainche,et al.  Higher order dynamic mode decomposition of noisy experimental data: The flow structure of a zero-net-mass-flux jet , 2017 .

[54]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[55]  I. H. Abbott,et al.  Theory of Wing Sections: Including a Summary of Airfoil Data , 1959 .

[56]  Martin W. Hess,et al.  Basic Ideas and Tools for Projection-Based Model Reduction of Parametric Partial Differential Equations , 2019, Snapshot-Based Methods and Algorithms.

[57]  Ilias Bilionis,et al.  Deep active subspaces -- a scalable method for high-dimensional uncertainty propagation , 2019, 1902.10527.

[58]  Paul G. Constantine,et al.  Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model , 2016, Stat. Anal. Data Min..

[59]  Youssef Marzouk,et al.  Gradient-Based Dimension Reduction of Multivariate Vector-Valued Functions , 2020, SIAM J. Sci. Comput..

[60]  Gianluigi Rozza,et al.  Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems , 2018, Communications in Computational Physics.

[61]  Gianluigi Rozza,et al.  Advances in reduced order methods for parametric industrial problems in computational fluid dynamics , 2018, 1811.08319.

[62]  Gianluigi Rozza,et al.  Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics , 2018, 1803.07377.

[63]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[64]  Eastman N. Jacobs,et al.  The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel , 1932 .

[65]  Gianluigi Rozza,et al.  The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows , 2018, Lecture Notes in Computational Science and Engineering.

[66]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .