Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications

[1]  J. Schroers,et al.  Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses , 2016, Scientific Reports.

[2]  R. Lazzari,et al.  Grain growth: The key to understand solid-state dewetting of silver thin films , 2016 .

[3]  T. Lu,et al.  Structural inhomogeneity and strain rate dependent indentation size effect in Zr-based metallic glass , 2016 .

[4]  S. Maruthamuthu,et al.  Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels , 2015, International journal of nanomedicine.

[5]  J. Chu,et al.  Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film , 2015 .

[6]  H. Fan,et al.  In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use , 2015 .

[7]  A. Billard,et al.  Binary Zr–Ni/Co metallic glass films: Role of the structural state on their durability , 2015 .

[8]  A. Billard,et al.  Zr–Cu thin film metallic glasses: An assessment of the thermal stability and phases’ transformation mechanisms , 2015 .

[9]  J. Lee,et al.  Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass , 2014 .

[10]  J. S. Jang,et al.  Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass , 2014 .

[11]  J. Chu,et al.  Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application , 2014 .

[12]  A. Billard,et al.  Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses , 2014 .

[13]  E. M. Fozo,et al.  Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses. , 2014, Materials science & engineering. C, Materials for biological applications.

[14]  Y. Lin,et al.  Promising antimicrobial capability of thin film metallic glasses. , 2014, Materials science & engineering. C, Materials for biological applications.

[15]  Carla Renata Arciola,et al.  A review of the biomaterials technologies for infection-resistant surfaces. , 2013, Biomaterials.

[16]  Lin Liu,et al.  A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications. , 2013, Acta biomaterialia.

[17]  Joe J. Harrison,et al.  Antimicrobial activity of metals: mechanisms, molecular targets and applications , 2013, Nature Reviews Microbiology.

[18]  Bo Cui,et al.  Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching , 2013, Nanoscale Research Letters.

[19]  J. Eckert,et al.  Designing biocompatible Ti-based metallic glasses for implant applications. , 2013, Materials science & engineering. C, Materials for biological applications.

[20]  J. B. Li,et al.  Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating , 2012 .

[21]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[22]  J. C. Huang,et al.  Thin film metallic glasses: Unique properties and potential applications , 2012 .

[23]  K. M. Liew,et al.  Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7 , 2012 .

[24]  J. S. Jang,et al.  Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans , 2010 .

[25]  Lin Liu,et al.  The potential of Zr-based bulk metallic glasses as biomaterials , 2010 .

[26]  Jan Schroers,et al.  Bulk metallic glasses for biomedical applications , 2009 .

[27]  Z. Xu,et al.  CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Zr-Cu Amorphous Films Prepared by Magnetron Co-sputtering Deposition of Pure Zr and Cu , 2009 .

[28]  J. F. Löffler,et al.  Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses , 2008 .

[29]  D. V. Louzguine-Luzgin,et al.  Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior , 2007 .

[30]  J. Eckert,et al.  Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy , 2007 .

[31]  C. Qiu,et al.  Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids , 2006 .

[32]  S. Tosatti,et al.  Cytotoxicity of Zr-based bulk metallic glasses , 2006 .

[33]  I. Manika,et al.  Size effects in micro- and nanoscale indentation , 2006 .

[34]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[35]  P. Liaw,et al.  Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness. , 2011, Acta biomaterialia.

[36]  Yufeng Zheng,et al.  In vitro study on Zr-based bulk metallic glasses as potential biomaterials. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.