Computable Convergence Bounds for GMRES

The purpose of this paper is to derive new computable convergence bounds for GMRES. The new bounds depend on the initial guess and are thus conceptually different from standard ``worst-case" bounds. Most importantly, approximations to the new bounds can be computed from information generated during the run of a certain GMRES implementation. The approximations allow predictions of how the algorithm will perform. Heuristics for such predictions are given. Numerical experiments illustrate the behavior of the new bounds as well as the use of the heuristics.

[1]  Jörg Liesen,et al.  The conformal ‘bratwurst’ mapsand associated Faber polynomials , 2000, Numerische Mathematik.

[2]  Ludwig Elsner,et al.  Perturbation and interlace theorems for the unitary eigenvalue problem , 1993 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  C. Bischof Incremental condition estimation , 1990 .

[5]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[6]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[7]  Homer F. Walker,et al.  A simpler GMRES , 1994, Numer. Linear Algebra Appl..

[8]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[9]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[10]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[11]  Wayne Joubert,et al.  A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..

[12]  M. Arioli,et al.  Krylov sequences of maximal length and convergence of GMRES , 1997 .

[13]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[14]  P. Saylor,et al.  Construction and Analysis of Polynomial Iterative Methods for Non-hermitian Systems of Linear Equations , 1998 .

[15]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[16]  Jörg Liesen,et al.  Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations , 1998 .

[17]  Jj Org Liesen Computable Convergence Bounds for Gmres , 1998 .

[18]  Anne Greenbaum,et al.  Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..

[19]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[20]  Lloyd N. Trefethen,et al.  GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..

[21]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[22]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[23]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[24]  Leonid Knizhnerman On GMRES-Equivalent Bounded Operators , 2000, SIAM J. Matrix Anal. Appl..

[25]  Thomas A. Manteuffel,et al.  Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..

[26]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[27]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[28]  V. Smirnov,et al.  Functions of a complex variable : constructive theory , 1968 .