Carbon dioxide activation and dissociation on ceria (110): a density functional theory study.

Ceria (CeO(2)) is a promising catalyst for the reduction of carbon dioxide (CO(2)) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO(2) adsorption, activation, and reduction on ceria surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (GGA+U), to explore various adsorption sites and configurations for CO(2) on stoichiometric and reduced ceria (110), the latter with either an in-plane oxygen vacancy or a split oxygen vacancy. We find that CO(2) adsorption on both reduced ceria (110) surfaces is thermodynamically favored over the corresponding adsorption on stoichiometric ceria (110), but the most stable adsorption configuration consists of CO(2) adsorbed parallel to the reduced ceria (110) surface at a split oxygen vacancy. Structural changes in the CO(2) molecule are also observed upon adsorption. At the split vacancy, the molecule bends out of plane to form a unidentate carbonate with the remaining oxygen anion at the surface; this is in stark contrast to the bridged carbonate observed for CO(2) adsorption at the in-plane vacancy. Also, we analyze the pathways for CO(2) conversion to CO on reduced ceria (110). The subtle difference in the energies of activation for the elementary steps suggest that CO(2) dissociation is favored on the split vacancy, while the reverse process of CO oxidation may favor the formation of the in-plane vacancy. We thus show how the structure and properties of the ceria catalyst govern the mechanism of CO(2) activation and reduction.

[1]  Stefano de Gironcoli,et al.  Taming multiple valency with density functionals: A case study of defective ceria , 2005 .

[2]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[3]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[4]  Tsunehiro Tanaka,et al.  Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO , 2004 .

[5]  Joachim Sauer,et al.  Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). , 2009, Physical review letters.

[6]  K. Hermansson,et al.  Molecular dynamics simulations of reduced CeO2: bulk and surfaces , 2004 .

[7]  S. C. Parker,et al.  Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide , 1992 .

[8]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[9]  Raymond J. Gorte,et al.  Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties , 1998 .

[10]  S. C. Parker,et al.  The electronic structure of oxygen vacancy defects at the low index surfaces of ceria , 2005 .

[11]  Stefano de Gironcoli,et al.  Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria' ” , 2005 .

[12]  Milorad P. Dudukovic,et al.  Conversion of Methane and Carbon Dioxide to Higher Value Products , 2011 .

[13]  Charles T. Campbell,et al.  Oxygen Vacancies and Catalysis on Ceria Surfaces , 2005, Science.

[14]  P. W. Reinhardt,et al.  Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities , 1975 .

[15]  B. Delley,et al.  Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation , 2009 .

[16]  K. Domen,et al.  Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.—Formation of carbonate species on dehydroxylated CeO2, at room temperature , 1989 .

[17]  R. E. Watson,et al.  Relativistic calculations of4fexcitation energies in the rare-earth metals: Further results , 1978 .

[18]  L. Curtiss,et al.  A Theoretical Study of CO2 Anions on Anatase (101) Surface , 2010 .

[19]  D. Koelling,et al.  The electronic structure of CeO2 and PrO2 , 1983 .

[20]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[21]  S. C. Parker,et al.  CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics. , 2006, Physical chemistry chemical physics : PCCP.

[22]  M. Nolan,et al.  The surface dependence of CO adsorption on Ceria. , 2006, The journal of physical chemistry. B.

[23]  Loïc Favergeon,et al.  CO2 adsorption on calcium oxide: An atomic-scale simulation study , 2012 .

[24]  H. Metiu,et al.  Vacancy formation and CO adsorption on gold-doped ceria surfaces , 2008 .

[25]  K. Hermansson,et al.  Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations , 2004 .

[26]  S. C. Parker,et al.  Reduction of NO2 on ceria surfaces. , 2006, The journal of physical chemistry. B.

[27]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[28]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[29]  R. Wu,et al.  Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces , 2011 .

[30]  M. V. Ganduglia-Pirovano,et al.  Comment on “Taming multiple valency with density functionals: A case study of defective ceria” , 2005 .

[31]  S. C. Parker,et al.  Oxidising CO to CO2 using ceria nanoparticles. , 2005, Physical chemistry chemical physics : PCCP.

[32]  J. White,et al.  Infrared and x-ray photoelectron spectroscopy study of carbon monoxide and carbon dioxide on platinum/ceria , 1987 .

[33]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[34]  M. Makkee,et al.  Oxygen exchange mechanism between isotopic CO2 and Pt/CeO2 , 2008 .

[35]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[36]  P. Madden,et al.  A dipole polarizable potential for reduced and doped CeO2 obtained from first principles , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  S. C. Parker,et al.  The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide , 1994 .

[38]  S. Li,et al.  Oxygen vacancy pairs on CeO2(110): A DFT + U study , 2009 .

[39]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[40]  C. Catlow,et al.  A Hartree-Fock periodic study of bulk ceria , 1993 .

[41]  E. Kümmerle,et al.  The Structures of C–Ce2O3+δ, Ce7O12, and Ce11O20 , 1999 .

[42]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[43]  Gwan Kim Ceria-promoted three-way catalysts for auto exhaust emission control , 1982 .

[44]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[45]  K. Hermansson,et al.  Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. , 2004, The Journal of chemical physics.

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  K. Jordan,et al.  CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments. , 2011, The Journal of chemical physics.

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  K. Jordan,et al.  CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study. , 2011, The Journal of chemical physics.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[53]  M. S. Hegde,et al.  A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles , 2003 .

[54]  Börje Johansson,et al.  Electronic, bonding, and optical properties of CeO 2 and Ce 2 O 3 from first principles , 2001 .

[55]  K. Hermansson,et al.  CO adsorption on CeO2(110) using hybrid-DFT embedded-cluster calculations , 2006 .

[56]  A. Fahmi,et al.  A theoretical study of CO2 adsorption on TiO2 , 1996 .

[57]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[58]  K. Hermansson,et al.  Electronic structure of the CeO2(110) surface oxygen vacancy , 2005 .

[59]  M. Engelhard,et al.  Redox properties of water on the oxidized and reduced surfaces of CeO2 , 2003 .

[60]  Stefano de Gironcoli,et al.  Electronic and atomistic structures of clean and reduced ceria surfaces. , 2005, The journal of physical chemistry. B.

[61]  H. Metiu,et al.  Catalysis by doped oxides : CO oxidation by AuxCe1- xO2 , 2007 .

[62]  M. Nolan Molecular Adsorption on the Doped (110) Ceria Surface , 2009 .

[63]  S. C. Parker,et al.  Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria , 2005 .

[64]  K. Prince,et al.  Ceria reoxidation by CO2: A model study , 2010 .

[65]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[66]  K. Hermansson,et al.  An ab initio study of CO adsorption on ceria(1 1 0) , 2005 .

[67]  H. Metiu,et al.  Effect of Dopants on the Energy of Oxygen-Vacancy Formation at the Surface of Ceria: Local or Global? , 2011 .

[68]  M. Nolan Hybrid density functional theory description of oxygen vacancies in the CeO2 (1 1 0) and (1 0 0) surfaces , 2010 .

[69]  A GGA+U study of the reduction of ceria surfaces and their partial reoxidation through NO2 adsorption , 2009 .

[70]  K. Hermansson,et al.  The electronic and reduction properties of Ce0.75Zr0.25O2(1 1 0) , 2008 .

[71]  Kiyoshi Otsuka,et al.  Direct partial oxidation of methane to synthesis gas by cerium oxide , 1998 .

[72]  Tsunehiro Tanaka,et al.  Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2 , 2000 .

[73]  Lidia Pino,et al.  Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles , 2002 .

[74]  M. Lorenz,et al.  CO2 activation on single crystal based ceria and magnesia/ceria model catalysts , 2010 .

[75]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[76]  C. Campbell,et al.  Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding , 2010, Science.