Dynamic Information Retrieval Modeling

Abstract Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Ret...

[1]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[2]  Walid Magdy,et al.  PRES: a score metric for evaluating recall-oriented information retrieval applications , 2010, SIGIR.

[3]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[4]  Wei Chu,et al.  Online learning for recency search ranking using real-time user feedback , 2010, CIKM '10.

[5]  Ingrid Renz,et al.  Adaptive information filtering: detecting changes in text streams , 1999, CIKM '99.

[6]  Hwanjo Yu,et al.  SVM selective sampling for ranking with application to data retrieval , 2005, KDD '05.

[7]  Zhen Shu,et al.  Web document ranking via active learning and kernel principal component analysis , 2015 .

[8]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[9]  Daniel S. Hirschberg,et al.  Algorithms for the Longest Common Subsequence Problem , 1977, JACM.

[10]  Grace Hui Yang,et al.  A POMDP model for content-free document re-ranking , 2014, SIGIR.

[11]  Thorsten Joachims,et al.  Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.

[12]  Milad Shokouhi,et al.  Query Suggestion and Data Fusion in Contextual Disambiguation , 2015, WWW.

[13]  Yang Song,et al.  Query suggestion by constructing term-transition graphs , 2012, WSDM '12.

[14]  Thorsten Joachims,et al.  The K-armed Dueling Bandits Problem , 2012, COLT.

[15]  Wenbin Cai,et al.  Active Learning for Web Search Ranking via Noise Injection , 2015, TWEB.

[16]  Ian Ruthven,et al.  Re-examining the potential effectiveness of interactive query expansion , 2003, SIGIR.

[17]  Oren Etzioni,et al.  Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.

[18]  Yi Zhang Using bayesian priors to combine classifiers for adaptive filtering , 2004, SIGIR '04.

[19]  Lorenzo Bruzzone,et al.  A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Kuansan Wang,et al.  Inferring search behaviors using partially observable markov model with duration (POMD) , 2011, WSDM '11.

[21]  John Riedl,et al.  Learning preferences of new users in recommender systems: an information theoretic approach , 2008, SKDD.

[22]  Minyi Guo,et al.  Location-Aware Information Retrieval for Mobile Computing , 2004, EUC.

[23]  Ryen W. White,et al.  Modeling and analysis of cross-session search tasks , 2011, SIGIR.

[24]  Katja Hofmann,et al.  Balancing Exploration and Exploitation in Learning to Rank Online , 2011, ECIR.

[25]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[26]  Charles L. A. Clarke,et al.  The influence of caption features on clickthrough patterns in web search , 2007, SIGIR.

[27]  Shuang-Hong Yang,et al.  Functional matrix factorizations for cold-start recommendation , 2011, SIGIR.

[28]  Jun Wang,et al.  Sequential selection of correlated ads by POMDPs , 2012, CIKM.

[29]  Grace Hui Yang,et al.  Designing States, Actions, and Rewards for Using POMDP in Session Search , 2015, ECIR.

[30]  M. de Rijke,et al.  Building simulated queries for known-item topics: an analysis using six european languages , 2007, SIGIR.

[31]  James Allan,et al.  Task-aware query recommendation , 2013, SIGIR.

[32]  Tetsuya Sakai,et al.  Evaluating diversified search results using per-intent graded relevance , 2011, SIGIR.

[33]  Amanda Spink,et al.  Use of query reformulation and relevance feedback by Excite users , 2000, Internet Res..

[34]  Mika Käki,et al.  Controlling the complexity in comparing search user interfaces via user studies , 2008, Information Processing & Management.

[35]  Wei Li,et al.  Exploitation and exploration in a performance based contextual advertising system , 2010, KDD.

[36]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[37]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[38]  Gary Marchionini,et al.  Report on ACM SIGIR 2006 workshop on evaluating exploratory search systems , 2006, SIGF.

[39]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[40]  Filip Radlinski,et al.  Optimized interleaving for online retrieval evaluation , 2013, WSDM.

[41]  Norbert Fuhr,et al.  A probability ranking principle for interactive information retrieval , 2008, Information Retrieval.

[42]  Ryen W. White,et al.  Modeling dwell time to predict click-level satisfaction , 2014, WSDM.

[43]  W. Bruce Croft,et al.  Query reformulation using anchor text , 2010, WSDM '10.

[44]  Nish Parikh,et al.  Scalable and near real-time burst detection from eCommerce queries , 2008, KDD.

[45]  Gabriella Kazai,et al.  Structural relevance: a common basis for the evaluation of structured document retrieval , 2008, CIKM '08.

[46]  Susan T. Dumais,et al.  The web changes everything: understanding the dynamics of web content , 2009, WSDM '09.

[47]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[48]  Lois M. L. Delcambre,et al.  Discounted Cumulated Gain Based Evaluation of Multiple-Query IR Sessions , 2008, ECIR.

[49]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[50]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[51]  James Allan,et al.  Predicting searcher frustration , 2010, SIGIR.

[52]  Yi Zhang,et al.  Interactive retrieval based on faceted feedback , 2010, SIGIR '10.

[53]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[54]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[55]  Jun Wang,et al.  A term-based methodology for query reformulation understanding , 2015, Information Retrieval Journal.

[56]  Vidit Jain,et al.  Learning to re-rank: query-dependent image re-ranking using click data , 2011, WWW.

[57]  Alistair Moffat,et al.  Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.

[58]  Hsinchun Chen,et al.  Summary in context: Searching versus browsing , 2006, TOIS.

[59]  Jun Wang,et al.  Interactive exploratory search for multi page search results , 2013, WWW.

[60]  Grace Hui Yang,et al.  Learning to Reinforce Search Effectiveness , 2015, ICTIR.

[61]  Grace Hui Yang,et al.  The water filling model and the cube test: multi-dimensional evaluation for professional search , 2013, CIKM.

[62]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[63]  Yiming Yang,et al.  Personalized active learning for collaborative filtering , 2008, SIGIR '08.

[64]  R. Agrawal Sample mean based index policies by O(log n) regret for the multi-armed bandit problem , 1995, Advances in Applied Probability.

[65]  A. A. Markov,et al.  An Example of Statistical Investigation of the Text Eugene Onegin Concerning the Connection of Samples in Chains , 2006, Science in Context.

[66]  Thomas Hofmann,et al.  Unifying collaborative and content-based filtering , 2004, ICML.

[67]  Paul N. Bennett,et al.  Toward whole-session relevance: exploring intrinsic diversity in web search , 2013, SIGIR.

[68]  Filip Radlinski,et al.  Large-scale validation and analysis of interleaved search evaluation , 2012, TOIS.

[69]  Wei Chu,et al.  Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms , 2010, WSDM '11.

[70]  Jaime G. Carbonell,et al.  Active Sampling for Rank Learning via Optimizing the Area under the ROC Curve , 2009, ECIR.

[71]  M. de Rijke,et al.  Multileave Gradient Descent for Fast Online Learning to Rank , 2016, WSDM.

[72]  Young-Woo Seo,et al.  A reinforcement learning agent for personalized information filtering , 2000, IUI '00.

[73]  Jingjing Liu,et al.  Personalizing information retrieval for multi‐session tasks: Examining the roles of task stage, task type, and topic knowledge on the interpretation of dwell time as an indicator of document usefulness , 2015, J. Assoc. Inf. Sci. Technol..

[74]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[75]  Nick Craswell,et al.  An experimental comparison of click position-bias models , 2008, WSDM '08.

[76]  Paul Over,et al.  TREC-8 interactive track , 1999, SIGF.

[77]  Robert D. Kleinberg,et al.  Regret bounds for sleeping experts and bandits , 2010, Machine Learning.

[78]  John D. Lafferty,et al.  Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.

[79]  Ingmar Weber,et al.  Type less, find more: fast autocompletion search with a succinct index , 2006, SIGIR.

[80]  ChengXiang Zhai,et al.  A learning approach to optimizing exploration–exploitation tradeoff in relevance feedback , 2012, Information Retrieval.

[81]  Katja Hofmann,et al.  Fast and reliable online learning to rank for information retrieval , 2013, SIGIR Forum.

[82]  William S. Cooper,et al.  On selecting a measure of retrieval effectiveness , 1973, J. Am. Soc. Inf. Sci..

[83]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[84]  Paul Over,et al.  Comparing interactive information retrieval systems across sites: the TREC-6 interactive track matrix experiment , 1998, SIGIR '98.

[85]  Jun Wang,et al.  Dynamic Information Retrieval: Theoretical Framework and Application , 2015, ICTIR.

[86]  Grace Hui Yang,et al.  Win-win search: dual-agent stochastic game in session search , 2014, SIGIR.

[87]  Nicholas J. Belkin,et al.  Relationships between categories of relevance criteria and stage in task completion , 2007, Inf. Process. Manag..

[88]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[89]  Jun Wang,et al.  Using control theory for stable and efficient recommender systems , 2012, WWW.

[90]  Charles L. A. Clarke,et al.  Time-based calibration of effectiveness measures , 2012, SIGIR '12.

[91]  Filip Radlinski,et al.  Learning diverse rankings with multi-armed bandits , 2008, ICML '08.

[92]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[93]  Jun Wang,et al.  Dynamical information retrieval modelling: a portfolio-armed bandit machine approach , 2012, WWW.

[94]  Milad Shokouhi,et al.  Learning to personalize query auto-completion , 2013, SIGIR.

[95]  Vassilis Plachouras,et al.  Online learning from click data for sponsored search , 2008, WWW.

[96]  Stephen E. Robertson,et al.  A new interpretation of average precision , 2008, SIGIR '08.

[97]  Matthew Lease,et al.  Active learning to maximize accuracy vs. effort in interactive information retrieval , 2011, SIGIR.

[98]  James Allan,et al.  Incremental relevance feedback for information filtering , 1996, SIGIR '96.

[99]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[100]  Susan T. Dumais,et al.  Personalizing atypical web search sessions , 2013, WSDM.

[101]  Wei Chu,et al.  Learning to extract cross-session search tasks , 2013, WWW.

[102]  Robert G. Capra,et al.  NSF workshop on task-based information search systems , 2013, SIGIR Forum.

[103]  Marc Najork,et al.  A large‐scale study of the evolution of Web pages , 2003, WWW '03.

[104]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[105]  Francesco Ricci,et al.  Learning and adaptivity in interactive recommender systems , 2007, ICEC.

[106]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[107]  Grace Hui Yang,et al.  Query change as relevance feedback in session search , 2013, SIGIR.

[108]  Yehuda Koren,et al.  Adaptive bootstrapping of recommender systems using decision trees , 2011, WSDM '11.

[109]  Hyung Jun Ahn,et al.  A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem , 2008, Inf. Sci..

[110]  Nicolò Cesa-Bianchi,et al.  Gambling in a rigged casino: The adversarial multi-armed bandit problem , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[111]  Ryen W. White,et al.  Leaving so soon?: understanding and predicting web search abandonment rationales , 2012, CIKM.

[112]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[113]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[114]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[115]  Chao Liu,et al.  Click chain model in web search , 2009, WWW '09.

[116]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[117]  C. Lee Giles,et al.  Discovering Relevant Scientific Literature on the Web , 2000, IEEE Intell. Syst..

[118]  Andrew Trotman,et al.  Comparative analysis of clicks and judgments for IR evaluation , 2009, WSCD '09.

[119]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[120]  Grace Hui Yang,et al.  Session Search by Direct Policy Learning , 2015, ICTIR.

[121]  Leif Azzopardi,et al.  The economics in interactive information retrieval , 2011, SIGIR.

[122]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[123]  Leif Azzopardi,et al.  Modelling interaction with economic models of search , 2014, SIGIR.

[124]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[125]  Tetsuya Sakai,et al.  Summaries, ranked retrieval and sessions: a unified framework for information access evaluation , 2013, SIGIR.

[126]  Amanda Spink,et al.  Multitasking during Web search sessions , 2006, Inf. Process. Manag..

[127]  Tie-Yan Liu Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..

[128]  Jude W. Shavlik,et al.  Learning users' interests by unobtrusively observing their normal behavior , 2000, IUI '00.

[129]  Marc-Allen Cartright,et al.  Intentions and attention in exploratory health search , 2011, SIGIR.

[130]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[131]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[132]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[133]  Gilad Mishne,et al.  Towards recency ranking in web search , 2010, WSDM '10.

[134]  Jun Wang,et al.  Dynamic Information Retrieval Modeling , 2015, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[135]  Wenbin Cai,et al.  Active learning for ranking with sample density , 2015, Information Retrieval Journal.

[136]  Ben Carterette,et al.  Evaluating multi-query sessions , 2011, SIGIR.

[137]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[138]  Ben Carterette,et al.  Simulating simple user behavior for system effectiveness evaluation , 2011, CIKM '11.

[139]  Susan T. Dumais,et al.  Understanding temporal query dynamics , 2011, WSDM '11.

[140]  Daqing He,et al.  Searching, browsing, and clicking in a search session: changes in user behavior by task and over time , 2014, SIGIR.

[141]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[142]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs , 1978, Oper. Res..

[143]  Yang Song,et al.  Optimal rare query suggestion with implicit user feedback , 2010, WWW '10.

[144]  Ram Akella,et al.  Active relevance feedback for difficult queries , 2008, CIKM '08.

[145]  Stephen E. Robertson,et al.  Threshold setting in adaptive filtering , 2000, J. Documentation.

[146]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[147]  Deepak Agarwal,et al.  Click shaping to optimize multiple objectives , 2011, KDD.

[148]  Kevin D. Glazebrook,et al.  Multi-Armed Bandit Allocation Indices: Gittins/Multi-Armed Bandit Allocation Indices , 2011 .

[149]  Susan T. Dumais,et al.  Personalized information delivery: an analysis of information filtering methods , 1992, CACM.

[150]  H. Vincent Poor,et al.  Cognitive Medium Access: Exploration, Exploitation, and Competition , 2007, IEEE Transactions on Mobile Computing.

[151]  Thomas W. Malone,et al.  Intelligent Information Sharing Systems , 1986 .

[152]  Andrew Turpin,et al.  Do batch and user evaluations give the same results? , 2000, SIGIR '00.

[153]  Jun Wang,et al.  Portfolio theory of information retrieval , 2009, SIGIR.

[154]  Matthias Hemmje,et al.  A 3D Based User Interface for Information Retrieval Systems , 1993, Workshop on Database Issues for Data Visualization.

[155]  Ellen M. Voorhees,et al.  The TREC robust retrieval track , 2005, SIGF.

[156]  Ryen W. White,et al.  A study of factors affecting the utility of implicit relevance feedback , 2005, SIGIR '05.

[157]  S. Robertson The probability ranking principle in IR , 1997 .

[158]  Thorsten Joachims,et al.  Dynamic ranked retrieval , 2011, WSDM '11.

[159]  J. Pearl Causal inference in statistics: An overview , 2009 .

[160]  Peter Auer,et al.  The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..

[161]  Yiming Yang,et al.  Modeling Expected Utility of Multi-session Information Distillation , 2009, ICTIR.

[162]  Falk Scholer,et al.  The effect of threshold priming and need for cognition on relevance calibration and assessment , 2013, SIGIR.

[163]  Lydia B. Chilton,et al.  Addressing people's information needs directly in a web search result page , 2011, WWW.

[164]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[165]  ChengXiang Zhai,et al.  Active feedback in ad hoc information retrieval , 2005, SIGIR '05.

[166]  Chao Liu,et al.  Efficient multiple-click models in web search , 2009, WSDM '09.

[167]  Filip Radlinski,et al.  Relevance and Effort: An Analysis of Document Utility , 2014, CIKM.

[168]  Deepayan Chakrabarti,et al.  Multi-armed bandit problems with dependent arms , 2007, ICML '07.

[169]  Thorsten Joachims,et al.  Structured learning of two-level dynamic rankings , 2011, CIKM '11.

[170]  H. Robbins,et al.  Asymptotically efficient adaptive allocation rules , 1985 .

[171]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[172]  Eric Brill,et al.  Improving web search ranking by incorporating user behavior information , 2006, SIGIR.

[173]  Olivier Chapelle,et al.  A dynamic bayesian network click model for web search ranking , 2009, WWW '09.

[174]  R. Bellman A Markovian Decision Process , 1957 .

[175]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[176]  Eli Upfal,et al.  Multi-Armed Bandits in Metric Spaces ∗ , 2008 .

[177]  Ricardo A. Baeza-Yates,et al.  Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.

[178]  Yoichi Shinoda,et al.  Information filtering based on user behavior analysis and best match text retrieval , 1994, SIGIR '94.

[179]  Hwee Tou Ng,et al.  Bayesian online classifiers for text classification and filtering , 2002, SIGIR '02.

[180]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[181]  Jaime Teevan,et al.  Understanding how people interact with web search results that change in real-time using implicit feedback , 2013, CIKM.

[182]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[183]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.