Population Dynamics of Harmful Cyanobacteria

[1]  Sangkyu Park,et al.  Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes , 2004, Nature.

[2]  Charles R. Goldman,et al.  Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America : a review and critique of experimental enrichments , 1990 .

[3]  A. Ernst,et al.  Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem , 1999, Archives of Microbiology.

[4]  K. Coale,et al.  Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific , 1991 .

[5]  Chung-Chi Chen,et al.  SCALING AQUATIC PRIMARY PRODUCTIVITY: EXPERIMENTS UNDER NUTRIENT- AND LIGHT-LIMITED CONDITIONS , 1997 .

[6]  W. R. Demott Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. , 1999 .

[7]  P. Weers,et al.  Effect of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity ofDaphnia galeata , 1997 .

[8]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[9]  P. Fay Oxygen relations of nitrogen fixation in cyanobacteria. , 1992, Microbiological reviews.

[10]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[11]  B. Ibelings,et al.  Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands , 1996 .

[12]  D. Schindler,et al.  Eutrophication and Recovery in Experimental Lakes: Implications for Lake Management , 1974, Science.

[13]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[14]  B. Levin Frequency-dependent selection in bacterial populations. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  F. Morel,et al.  Zinc and carbon co-limitation of marine phytoplankton , 1994, Nature.

[16]  R. G. Sheath,et al.  Phenology of a Batrachospermum population in a boreal pond and its implications for the systematics of section Turfosa (Batrachospermales, Rhodophyta) , 1997 .

[17]  A. Kaplan,et al.  Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism , 2002 .

[18]  M. Hunter,et al.  Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga , 2001, Microbial Ecology.

[19]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[20]  J. Gallon,et al.  N2 Fixation by non-heterocystous cyanobacteria , 1997 .

[21]  G. E. Hutchinson,et al.  A Treatise on Limnology Vol. II: Introduction to Lake Biology and the Limnoplankton , 1967 .

[22]  Da‐Yong Zhang,et al.  The effects of initial population density on the competition for limiting nutrients in two freshwater algae , 1993, Oecologia.

[23]  F. Johnson,et al.  Green, bluegreen and diatom algae: Taxonomie differences in competitive ability for phosphorus, silicon and nitrogen , 1986, Archiv für Hydrobiologie.

[24]  J. Monod,et al.  Technique, Theory and Applications of Continuous Culture. , 1950 .

[25]  V. Smith,et al.  Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton , 1983, Science.

[26]  W. J. Henley MEASUREMENT AND INTERPRETATION OF PHOTOSYNTHETIC LIGHT‐RESPONSE CURVES IN ALGAE IN THE CONTEXT OF PHOTOINHIBITION AND DIEL CHANGES , 1993 .

[27]  F. Rassoulzadegan,et al.  P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean , 1998 .

[28]  D. Armstrong,et al.  Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture , 1981 .

[29]  G. E. Hutchinson De rebus planctonicis , 1974 .

[30]  E. Prepas,et al.  Evaluation of Total Phosphorus as a Predictor of the Relative Biomass of Blue-green Algae with Emphasis on Alberta Lakes , 1987 .

[31]  Sze-Bi Hsu,et al.  A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms , 1977 .

[32]  John R. Post,et al.  Trophic Relationships in Freshwater Pelagic Ecosystems , 1986 .

[33]  R. Hood,et al.  Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography , 2003 .

[34]  D. Findlay,et al.  CARBON AVAILABILITY AND THE PATTERN OF CYANOBACTERIAL DOMINANCE IN ENRICHED LOW‐CARBON LAKES 1 , 1995 .

[35]  F. Jüttner,et al.  FISCHERELLIN, A NEW ALLELOCHEMICAL FROM THE FRESHWATER CYANOBACTERIUM FISCHERELLA MUSCICOLA 1 , 1991 .

[36]  E. Abraham,et al.  Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand , 2001 .

[37]  Mathew A. Leibold,et al.  A Graphical Model of Keystone Predators in Food Webs: Trophic Regulation of Abundance, Incidence, and Diversity Patterns in Communities , 1996, The American Naturalist.

[38]  Jamie Bartram,et al.  Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management Chapter 2. Cyanobacteria in the Environment 2.1 Nature and Diversity 2.1.1 Systematics , 2022 .

[39]  R. Oliver,et al.  Transitions between Auhcoseira and Anabaena dominance in a turbid river weir pool , 1998 .

[40]  J. J. Gilbert Susceptibility of planktonic rotifers to a toxic strain of Anabaena flos‐aquae , 1994 .

[41]  Franz J. Weissing,et al.  Light-limited growth and competition for light in well-mixed aquatic environments : An elementary model , 1994 .

[42]  J. Downing,et al.  Predicting cyanobacteria dominance in lakes , 2001 .

[43]  E. Flores,et al.  Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains , 1986, Archives of Microbiology.

[44]  F. K. Gleason,et al.  Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms , 1986 .

[45]  Franz J. Weissing,et al.  Competition for light between phytoplankton species : Experimental tests of mechanistic theory , 1999 .

[46]  J. Huisman,et al.  How Do Sinking Phytoplankton Species Manage to Persist? , 2002, The American Naturalist.

[47]  Wayne W. Carmichael,et al.  Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie , 2001 .

[48]  S. Condie,et al.  Modelling the distribution of Anabaena and Melosira in a stratified river weir pool , 1997, Hydrobiologia.

[49]  M. Scheffer,et al.  Alternative equilibria in shallow lakes. , 1993, Trends in ecology & evolution.

[50]  R. Sterner Seasonal and spatial patterns in macro‐ and micronutrient limitation in Joe Pool Lake, Texas , 1994 .

[51]  Kunimitsu Kaya,et al.  Cyanobacterial toxins, exposure routes and human health , 1999 .

[52]  J. Huisman,et al.  Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon , 1997 .

[53]  J. Huisman POPULATION DYNAMICS OF LIGHT-LIMITED PHYTOPLANKTON: MICROCOSM EXPERIMENTS , 1999 .

[54]  Levin,et al.  Allelopathy in Spatially Distributed Populations , 1997, Journal of theoretical biology.

[55]  D. Tilman Resource Competition between Plankton Algae: An Experimental and Theoretical Approach , 1977 .

[56]  P. Raimbault,et al.  Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? , 2002 .

[57]  C. Duarte,et al.  Patterns in phytoplankton community structure in Florida lakes , 1992 .

[58]  S. Azevedo,et al.  Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans , 2000 .

[59]  F. K. Gleason,et al.  Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp. , 1984, Archives of Microbiology.

[60]  E. Donk,et al.  Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake , 1993, Hydrobiologia.

[61]  J. Huisman,et al.  COMPETITION BETWEEN A PROCHLOROPHYTE AND A CYANOBACTERIUM UNDER VARIOUS PHOSPHORUS REGIMES: COMPARISON WITH THE DROOP MODEL , 1998 .

[62]  L. R. Mur,et al.  Some experiments on the competition between green algae and blue‐green bacteria in light‐limited environments , 1977 .

[63]  S. Ghosal,et al.  A simple model illustrating the role of turbulence on phytoplankton blooms , 2003, Journal of mathematical biology.

[64]  F. M. Morel,et al.  Cadmium: A nutrient for the marine diatom Thalassiosira weissflogii , 1995 .

[65]  J. Grover INFLUENCE OF CELL SHAPE AND SIZE ON ALGAL COMPETITIVE ABILITY 1 , 1989 .

[66]  M. Viitasalo,et al.  Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria , 1999 .

[67]  Colin S. Reynolds,et al.  Vegetation processes in the pelagic : a model for ecosystem theory , 1997 .

[68]  Jef Huisman,et al.  Global biodiversity patterns of marine phytoplankton and zooplankton , 2004, Nature.

[69]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .

[70]  R. Drenner,et al.  Piscivores, Trophic Cascades, and Lake Management , 2002, TheScientificWorldJournal.

[71]  L. R. Mur,et al.  Energy requirements for growth and maintenance of Scenedesmus protuberans Fritsch in light-limited continuous cultures , 1980, Archives of Microbiology.

[72]  S. Diehl,et al.  PHYTOPLANKTON, LIGHT, AND NUTRIENTS IN A GRADIENT OF MIXING DEPTHS: FIELD EXPERIMENTS , 2002 .

[73]  E. Donk,et al.  Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review , 2002 .

[74]  C. Burns THE RELATIONSHIP BETWEEN BODY SIZE OF FILTER‐FEEDING CLADOCERA AND THE MAXIMUM SIZE OF PARTICLE INGESTED , 1968 .

[75]  E. Gross,et al.  Allelopathy of Aquatic Autotrophs , 2003 .

[76]  Janet K. Thompson,et al.  Does the Sverdrup critical depth model explain bloom dynamics in estuaries , 1998 .

[77]  T. Smayda The suspension and sinking of phytoplankton in the sea , 1970 .

[78]  G. E. Hutchinson Introduction to lake biology and the limnoplankton , 1967 .

[79]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[80]  Ulrich Sommer,et al.  Nitrate- and silicate-competition among antarctic phytoplankton , 1986 .

[81]  P. Thompson,et al.  The effect of changes in light availability caused by mixing on the growth of Anabaena circinalis (Nostocales, Cyanobacteria) and Aulacoseira sp. (Centrales, Bacillariophyceae) , 2001 .

[82]  J. Gallon N2 fixation in phototrophs: adaptation to a specialized way of life , 2001, Plant and Soil.

[83]  J. Imberger,et al.  Mixing processes relevant to phytoplankton dynamics in lakes , 1987 .

[84]  Ben P. Sommeijer,et al.  Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters , 2002 .

[85]  W. R. Demott,et al.  Phosphorus limitation in Daphnia: Evidence from a long term study of three hypereutrophic Dutch lakes , 1999 .

[86]  J. Huisman,et al.  Allelopathic interactions between phytoplankton species: The roles of heterotrophic bacteria and mixing intensity , 2004 .

[87]  H. Müller,et al.  The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity , 1981, Oecologia.

[88]  K. Keating,et al.  Allelopathic Influence on Blue-Green Bloom Sequence in a Eutrophic Lake , 1977, Science.

[89]  A. Wüest,et al.  Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure , 1999 .

[90]  E. Donk,et al.  TEMPERATURE EFFECTS ON SILICON‐ AND PHOSPHORUS‐LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS 1 , 1990 .

[91]  J. Meriluoto,et al.  Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods , 2002 .

[92]  Franz J. Weissing,et al.  Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms , 1999 .

[93]  D. McQueen,et al.  Biomanipulation : hit or myth ? , 1992 .

[94]  L. Chao,et al.  Structured habitats and the evolution of anticompetitor toxins in bacteria. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[95]  S. Condie Settling regimes for non-motile particles in stratified waters , 1999 .

[96]  Lucas J Stal,et al.  The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. , 1997, The New phytologist.

[97]  W. Lampert,et al.  Food Thresholds in Daphnia Species in the Absence and Presence of Blue‐Green Filaments , 1990 .

[98]  E. Dittmann,et al.  Role of Microcystins in Poisoning and Food Ingestion Inhibition of Daphnia galeata Caused by the Cyanobacterium Microcystis aeruginosa , 1999, Applied and Environmental Microbiology.

[99]  E. Donk,et al.  Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large‐bodied species by interfering filaments of cyanobacteria , 2001 .

[100]  Norio Sugiura,et al.  Nutrient‐limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures , 1997 .

[101]  K. Rothhaupt Laboratorary Experiments with a Mixotrophic Chrysophyte and Obligately Phagotrophic and Photographic Competitors , 1996 .

[102]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[103]  Tom Andersen,et al.  Carbon, nitrogen, and phosphorus content of freshwater zooplankton , 1991 .

[104]  U. Sommer Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake , 1989 .

[105]  H. Olsson,et al.  Phosphatases; origin, characteristics and function in lakes , 1988, Hydrobiologia.

[106]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[107]  E. Prepas,et al.  Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities , 2003 .

[108]  P. Falkowski,et al.  Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean , 1996, Nature.

[109]  J. Grover Competition, Herbivory, and Enrichment: Nutrient-Based Models for Edible and Inedible Plants , 1995, The American Naturalist.

[110]  Colin S. Reynolds,et al.  Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass , 1984 .

[111]  J. Huisman,et al.  Changes in turbulent mixing shift competition for light between phytoplankton species , 2004 .

[112]  P. Falkowski Rationalizing elemental ratios in unicellular algae , 2000 .

[113]  Michael T. Brett,et al.  Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters , 1990 .

[114]  L. R. Mur,et al.  Growth Kinetics of Oscillatoria agardhii Gomont in Continuous Culture, Limited in its Growth by the Light Energy Supply , 1979 .

[115]  F. Jüttner,et al.  Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum , 1996 .

[116]  S. Frank Spatial polymorphism of bacteriocins and other allelopathic traits , 1994, Evolutionary Ecology.

[117]  M. Z. Gliwicz Between hazards of starvation and risk of predation : the ecology of offshore animals , 2003 .

[118]  A. Ōkubo,et al.  Analysis of the self-shading effect on algal vertical distribution in natural waters , 1981 .

[119]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[120]  J. Pignatello,et al.  Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. , 1982, Science.

[121]  Min-Ho Jang,et al.  Toxin production of cyanobacteria is increased by exposure to zooplankton , 2003 .

[122]  B. Ibelings,et al.  Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria , 1998 .

[123]  Carlos M. Duarte,et al.  Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production , 2000 .

[124]  H. Matthijs,et al.  Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. , 2004, FEMS microbiology ecology.