Lower semicontinuity problems in Sobolev spaces with respect to a measure
暂无分享,去创建一个
[1] L. Ambrosio. On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .
[2] Irene Fonseca,et al. Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u) , 1993 .
[3] L. Ambrosio,et al. On the relaxation in BV(Ω; Rm) of quasi-convex integrals , 1992 .
[4] Irene Fonseca,et al. Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .
[5] L. Modica. The gradient theory of phase transitions and the minimal interface criterion , 1987 .
[6] Nicola Fusco,et al. Semicontinuity problems in the calculus of variations , 1984 .
[7] Paolo Marcellini,et al. Semicontinuity problems in the calculus of variations , 1980 .
[8] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[9] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[10] H. Fédérer. Geometric Measure Theory , 1969 .
[11] G. Buttazzo,et al. Relaxation results for some free discontinuity problems. , 1995 .
[12] Andrea Braides,et al. The interaction between bulk energy and surface energy in multiple integrals , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[13] Ana Cristina Barroso,et al. Anisotropic singular perturbations—the vectorial case , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] E. Giorgi,et al. Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .
[15] A. I. Vol'pert,et al. Analysis in classes of discontinuous functions and equations of mathematical physics , 1985 .
[16] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .