Thermal Analysis of Radial-Flux Electrical Machines With a High Power Density

A lumped-parameter-based thermal analysis applicable to radial-flux electrical machines with a high power density is presented. The modeling strategies using T-equivalent lumped-parameter blocks as well as conventionally defined thermal resistances are discussed. Special attention is paid to the modeling of the convective heat transfer in the air gap of radial-flux electrical machines at different rotational speeds. A brief overview of the evaluation of different loss components is given. The performance of the developed thermal model was verified by comparing the calculated temperature values with the measurements in three different applications.

[1]  A. Boglietti,et al.  Determination of Critical Parameters in Electrical Machine Thermal Models , 2007, 2007 IEEE Industry Applications Annual Meeting.

[2]  J. G. Kassakian,et al.  A STATIONARY THERMAL MODEL FOR SMOOTH AIR-GAP ROTATING ELECTRIC MACHINES , 1979 .

[3]  J. W. Polkowski,et al.  Turbulent Flow Between Coaxial Cylinders With the Inner Cylinder Rotating , 1983 .

[4]  Pia Salminen,et al.  Fractional slot permanent magnet synchronous motors for low speed applications , 2004 .

[5]  J. Saari Thermal analysis of high-speed induction machines , 1998 .

[6]  D. Howe,et al.  Thermal analysis of permanent magnet machines , 1993 .

[7]  G. Bertotti General properties of power losses in soft ferromagnetic materials , 1988 .

[8]  A. Boglietti,et al.  Analysis of the Endwinding Cooling Effects in TEFC Induction Motors , 2006, IEEE Transactions on Industry Applications.

[9]  A. Boglietti,et al.  TEFC induction motors thermal models: a parameter sensitivity analysis , 2004, IEEE Transactions on Industry Applications.

[10]  Gunnar Kylander,et al.  Thermal Modelling of Small Cage Induction Motors , 1995 .

[11]  F. Incropera,et al.  Fundamentals of heat and mass transfer, 2nd edition , 1990 .

[12]  D. R. Turner,et al.  Lumped parameter thermal model for electrical machines of TEFC design , 1991 .

[13]  D. Rodger,et al.  Coupled electromagnetic-thermal modeling of electrical machines , 2003 .

[14]  A. Cavagnino,et al.  Convection Heat Transfer and Flow Calculations Suitable for Analytical Modelling of Electric Machines , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[15]  Frank Kreith,et al.  Convection Heat Transfer in Rotating Systems , 1969 .

[16]  John R. Howell,et al.  A catalog of radiation configuration factors , 1982 .

[17]  T. Jokinen,et al.  Modelling of the coolant flow with heat flow controlled temperature sources in thermal networks , 1997 .

[18]  Bernd Ponick,et al.  Berechnung elektrischer Maschinen , 2007 .

[19]  Zhejie Liu,et al.  Analysis of eddy current and thermal problems in permanent magnet machines with radial-field topologies , 1995 .

[20]  E. Bilgen,et al.  Functional Dependence of Torque Coefficient of Coaxial Cylinders on Gap Width and Reynolds Numbers , 1973 .

[21]  D C Hamilton,et al.  Radiant-Interchange Configuration Factors , 1952 .

[22]  Johan Driesen Coupled Electromagnetic-Thermal Problems in Electrical Energy Transducers , 2000 .

[23]  A. Vallan,et al.  Evaluation of radiation thermal resistances in industrial motors , 2005, IEEE Transactions on Industry Applications.

[24]  A. Boglietti,et al.  Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors , 2005, IEEE Transactions on Energy Conversion.

[25]  Petri Sallinen,et al.  Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine , 2004 .