Robust Face Recognition via Block Sparse Bayesian Learning

Face recognition (FR) is an important task in pattern recognition and computer vision. Sparse representation (SR) has been demonstrated to be a powerful framework for FR. In general, an SR algorithm treats each face in a training dataset as a basis function and tries to find a sparse representation of a test face under these basis functions. The sparse representation coefficients then provide a recognition hint. Early SR algorithms are based on a basic sparse model. Recently, it has been found that algorithms based on a block sparse model can achieve better recognition rates. Based on this model, in this study, we use block sparse Bayesian learning (BSBL) to find a sparse representation of a test face for recognition. BSBL is a recently proposed framework, which has many advantages over existing block-sparse-model-based algorithms. Experimental results on the Extended Yale B, the AR, and the CMU PIE face databases show that using BSBL can achieve better recognition rates and higher robustness than state-of-the-art algorithms in most cases.

[1]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[2]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  David Zhang,et al.  On the Dimensionality Reduction for Sparse Representation Based Face Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[4]  J KriegmanDavid,et al.  Acquiring Linear Subspaces for Face Recognition under Variable Lighting , 2005 .

[5]  Bhaskar D. Rao,et al.  Extension of SBL Algorithms for the Recovery of Block Sparse Signals With Intra-Block Correlation , 2012, IEEE Transactions on Signal Processing.

[6]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Bhaskar D. Rao,et al.  Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning , 2011, IEEE Journal of Selected Topics in Signal Processing.

[9]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[10]  Zhilin Zhang Sparse signal recovery exploiting spatiotemporal correlation , 2012 .

[11]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[12]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[13]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[14]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[15]  René Vidal,et al.  Block-Sparse Recovery via Convex Optimization , 2011, IEEE Transactions on Signal Processing.

[16]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  Jian Yang,et al.  Robust sparse coding for face recognition , 2011, CVPR 2011.

[19]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[20]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[21]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Wangmeng Zuo,et al.  Supervised sparse representation method with a heuristic strategy and face recognition experiments , 2012, Neurocomputing.

[23]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[24]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[25]  Shiguang Shan,et al.  Novel face recognition based on individual eigen-subspaces , 2000, WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000.

[26]  Ying-Ke Lei,et al.  Face recognition via Weighted Sparse Representation , 2013, J. Vis. Commun. Image Represent..

[27]  A. Martínez,et al.  The AR face databasae , 1998 .

[28]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[29]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  David J. C. MacKay,et al.  The Evidence Framework Applied to Classification Networks , 1992, Neural Computation.

[31]  David P. Wipf,et al.  Sparse Estimation with Structured Dictionaries , 2011, NIPS.

[32]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[33]  Liang-Tien Chia,et al.  Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.

[34]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  David P. Wipf,et al.  Bayesian methods for finding sparse representations , 2006 .

[36]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[38]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[39]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[42]  Trac D. Tran,et al.  Robust face recognition using locally adaptive sparse representation , 2010, 2010 IEEE International Conference on Image Processing.

[43]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[44]  Robert D. Nowak,et al.  Universal Measurement Bounds for Structured Sparse Signal Recovery , 2012, AISTATS.

[45]  Shannon L. Risacher,et al.  Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Tzyy-Ping Jung,et al.  Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning , 2012, IEEE Transactions on Biomedical Engineering.

[47]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[48]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[49]  Tzyy-Ping Jung,et al.  Compressed Sensing of EEG for Wireless Telemonitoring With Low Energy Consumption and Inexpensive Hardware , 2012, IEEE Transactions on Biomedical Engineering.