Moderate resolution remote sensing alternatives: a review of Landsat-like sensors and their applications

Earth observation with Landsat and other moderate resolution sensors is a vital component of a wide variety of applications across disciplines. Despite the widespread success of the Landsat program, recent problems with Landsat 5 and Landsat 7 create uncertainty about the future of moderate resolution remote sensing. Several other Landsat-like sensors have demonstrated applicability in key fields of earth observation research and could potentially complement or replace Landsat. The objective of this paper is to review the range of applications of 5 satellite suites and their Landsat-like sensors: SPOT, IRS, CBERS, ASTER, and ALI. We give a brief overview of each sensor, and review the documented applications in several earth observation domains, including land cover classification, forests and woodlands, agriculture and rangelands, and urban. We conclude with suggestions for further research into the fields of cross-sensor comparison and multi-sensor fusion. This paper is significant because it provides the remote sensing community a concise synthesis of Landsat-like sensors and research demonstrating their capabilities. It is also timely because it provides a framework for evaluating the range of Landsat alternatives, and strategies for minimizing the impact of a possible Landsat data gap.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Curtis E. Woodcock,et al.  Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources , 2006 .

[3]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[4]  Darrel L. Williams,et al.  Landsat: Yesterday, Today, and Tomorrow , 2006 .

[5]  E. Lambin,et al.  Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia , 2001 .

[6]  Anil Rai,et al.  Small area estimation of crop yield using remote sensing satellite data , 2002 .

[7]  N. Ishitsuka,et al.  Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan , 2001 .

[8]  Isam Kaysi,et al.  Identifying urban boundaries: application of remote sensing and geographic information system technologies , 2003 .

[9]  Warren B. Cohen,et al.  Carbon Stores, Sinks, and Sources in Forests of Northwestern Russia: Can We Reconcile Forest Inventories with Remote Sensing Results? , 2004 .

[10]  R. Pu,et al.  EO‐1 Hyperion, ALI and Landsat 7 ETM+ data comparison for estimating forest crown closure and leaf area index , 2005 .

[11]  W. Cohen,et al.  Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data , 2001 .

[12]  N. R. Patel,et al.  Remote sensing of regional yield assessment of wheat in Haryana, India , 2006 .

[13]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[14]  J. E. Pinder,et al.  A comparison of Landsat Thematic Mapper and SPOT multi-spectral imagery for the classification of shrub and meadow vegetation in Northern California, U.S.A. , 1997 .

[15]  Patrick E. Clark,et al.  Intermountain plant community classification using Landsat TM and SPOT HRV data. , 2001 .

[16]  M. Crawford,et al.  Results from the EO‐1 experiment—A comparative study of Earth Observing‐1 Advanced Land Imager (ALI) and Landsat ETM+ data for land cover mapping in the Okavango Delta, Botswana , 2005 .

[17]  W. Cohen,et al.  Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection , 2005 .

[18]  Nelson D. A. Mascarenhas,et al.  Multispectral image data fusion using POCS and super-resolution , 2006, Comput. Vis. Image Underst..

[19]  L. Vierling,et al.  Multispectral remote sensing of landscape level foliar moisture: techniques and applications for forest ecosystem monitoring , 2005 .

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[22]  J. Irons,et al.  Requirements for a Landsat Data Continuity Mission , 2006 .

[23]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[24]  J. Heiskanen Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data , 2006 .

[25]  John F. Mustard,et al.  Precision and accuracy of EO-1 Advanced Land Imager (ALI) data for semiarid vegetation studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[27]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[28]  Sadhana Jain,et al.  Enhanced capabilities of IRS P6 LISS IV sensor for urban mapping , 2005 .

[29]  W. Shi,et al.  Multi-band wavelet for fusing SPOT panchromatic and multispectral images , 2003 .

[30]  Wu Lian,et al.  A New Fusion Technique of Remote Sensing Images for Land Use/Cover , 2004 .

[31]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  Sarnam Singh,et al.  Geospatial modelling techniques for rapid assessment of phytodiversity at landscape level in western Himalayas, Himachal Pradesh , 2003 .

[33]  Michael A. Wulder,et al.  Cross-sensor change detection over a forested landscape: Options to enable continuity of medium spatial resolution measures , 2008 .

[34]  Feng Zhao,et al.  Comparison of the influence factors onNDVI for CCD camera and WFI imager on CBERS-02 , 2005 .

[35]  W. Stefanov,et al.  Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center , 2005 .

[36]  K. N. Dollman,et al.  - 1 , 1743 .

[37]  S. Sudhakar,et al.  Forest cover mapping of West Bengal with special reference to North Bengal using IRS-1B satellite LISS II data , 1996 .

[38]  W. Cohen,et al.  Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery , 2002, Ecosystems.

[39]  Mukunda Dev Behera,et al.  Assessment of biological richness in different altitudinal zones in the Eastern Himalayas, Arunachal Pradesh, India , 2005 .

[40]  Qihao Weng,et al.  Using Landsat ETM+ Imagery to Measure Population Density in Indianapolis, Indiana, USA , 2005 .

[41]  Guobin Zhu,et al.  Classification using ASTER data and SVM algorithms;: The case study of Beer Sheva, Israel , 2002 .

[42]  B. Balaguru,et al.  Identification of conservation priority sites using remote sensing and GIS: A case study from Chitteri Hills, Eastern Ghats, Tamil Nadu , 2004 .

[43]  Pete Watt,et al.  An evaluation of the use of satellite data for monitoring early development of young Sitka spruce plantation forest growth , 2004 .

[44]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[45]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[46]  Shalini Srivastava,et al.  Stratification and mapping of Taxus baccata L. bearing forests in Talle Valley using remote sensing and GIS. , 2000 .

[47]  Paul Treitz,et al.  Comparison of function‐ and structure‐based schemes for classification of remotely sensed data , 2005 .

[48]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Christiane Weber,et al.  Urbanization pressure and modeling of urban growth: example of the Tunis Metropolitan Area , 2003 .

[50]  Charles E. Olson,et al.  The significance of spatial resolution: Identifying forest cover from satellite data , 2001 .

[51]  S. Sanjeevi,et al.  A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India , 2006 .

[52]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[53]  W. Cohen,et al.  Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery , 1992 .

[54]  J. Gao,et al.  Capability of SPOT XS data in producing detailed land cover maps at the urban-rural periphery , 1998 .

[55]  Wang Ying,et al.  Study of remote sensing monitoring of dynamic change of the Loess Plateau forest resources , 2004 .

[56]  Frédéric Baret,et al.  Intercalibration of vegetation indices from different sensor systems , 2003 .

[57]  P. P. Nageswara Rao,et al.  Acreage and production estimation of mango orchards using Indian Remote Sensing (IRS) satellite data , 2002 .

[58]  M. Alberti,et al.  Urban Land-Cover Change Analysis in Central Puget Sound , 2004 .

[59]  C. B. S. Dutt,et al.  IRS-1C DATA UTILIZATION FOR FORESTRY APPLICATIONS , 1996 .

[60]  Alan T. Murray,et al.  Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data , 2000 .

[61]  Warren B. Cohen,et al.  Effects of spatial variability in light use efficiency on satellite-based NPP monitoring , 2002 .

[62]  T. Dawson,et al.  Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol , 2005 .

[63]  Manoj K. Arora,et al.  An evaluation of fuzzy classifications from IRS 1C LISS III imagery: A case study , 2003 .

[64]  Conghe Song,et al.  Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon , 2006 .

[65]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[66]  D. Fuller Satellite remote sensing of biomass burning with optical and thermal sensors , 2000 .

[67]  H Nagendra,et al.  Biodiversity assessment at multiple scales: linking remotely sensed data with field information. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[69]  Catherine A. Christen,et al.  The Impact of Landsat Satellite Monitoring on Conservation Biology , 2005, Environmental monitoring and assessment.

[70]  A. J. Stern,et al.  Crop Yield Assessment from Remote Sensing , 2003 .

[71]  S. K. Pathan,et al.  IRS-1C APPLICATIONS FOR URBAN PLANNING AND DEVELOPMENT , 1996 .

[73]  Gregory Asner,et al.  Comparison of Earth Observing-1 ALI and Landsat ETM+ for crop identification and yield prediction in Mexico , 2003, IEEE Trans. Geosci. Remote. Sens..

[74]  Rick L. Lawrence,et al.  Land use and land cover change in the greater yellowstone ecosystem: 1975-1995 , 2003 .

[75]  C. Rebmann,et al.  Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites , 2006 .

[76]  Craig S. T. Daughtry,et al.  Estimation and validation of land surface broadband albedos and leaf area index from EO-1 ALI data , 2003, IEEE Trans. Geosci. Remote. Sens..

[77]  E. Broadbent,et al.  Recovery of forest structure and spectral properties after selective logging in lowland Bolivia. , 2006, Ecological applications : a publication of the Ecological Society of America.

[78]  Yu Cheng,et al.  Biomass estimation and uncertainty analysis based on CBERS-02 CCD camera data and field measurement , 2005, Science China Technological Sciences.

[79]  Gu Xingfa,et al.  Estimating surface evapotranspiration using combined MODIS and CBERS-02 data , 2005 .