Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys

[1]  Xiaoqin Wang,et al.  A silent two-photon imaging system for studying in vivo auditory neuronal functions , 2022, Light, science & applications.

[2]  Miguel R. Chuapoco,et al.  AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset , 2021, Nature Neuroscience.

[3]  Xiaoqin Wang,et al.  Intracellular neuronal recording in awake nonhuman primates , 2020, Nature Protocols.

[4]  Michael M. Halassa,et al.  An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques , 2020, Neuron.

[5]  Piotr Majka,et al.  Histology‐Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas , 2020, NeuroImage.

[6]  Matthew T. Kaufman,et al.  Single-trial neural dynamics are dominated by richly varied movements , 2019, Nature Neuroscience.

[7]  Dr. Susanne Radtke-Schuller Cyto- and Myeloarchitectural Brain Atlas of the Ferret (Mustela putorius) in MRI Aided Stereotaxic Coordinates , 2018, Springer International Publishing.

[8]  Marcello G. P. Rosa,et al.  Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex , 2018, Front. Neural Circuits.

[9]  Matthew F. Glasser,et al.  Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans , 2018, Neuron.

[10]  Xiaoqin Wang,et al.  Cortical Coding of Auditory Features. , 2018, Annual review of neuroscience.

[11]  A. Angelucci,et al.  Top-down feedback controls spatial summation and response amplitude in primate visual cortex , 2018, Nature Communications.

[12]  David A. Leopold,et al.  A digital 3D atlas of the marmoset brain based on multi-modal MRI , 2018, NeuroImage.

[13]  Bojana Stefanovic,et al.  Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus) , 2018, NMR in biomedicine.

[14]  Naohisa Miyakawa,et al.  Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging , 2018, eNeuro.

[15]  N. Kanwisher,et al.  Perceiving social interactions in the posterior superior temporal sulcus , 2017, Proceedings of the National Academy of Sciences.

[16]  Fei Liu,et al.  Postnatal Craniofacial Skeletal Development of Female C57BL/6NCrl Mice , 2017, Front. Physiol..

[17]  J. Sliwa,et al.  A dedicated network for social interaction processing in the primate brain , 2017, Science.

[18]  Tristan A. Chaplin,et al.  Sensitivity of Neurons in the Middle Temporal Area of Marmoset Monkeys to Random Dot Motion , 2017, bioRxiv.

[19]  E. Pnevmatikakis,et al.  NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data , 2017, Journal of Neuroscience Methods.

[20]  Ying Ma,et al.  Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Cory T. Miller,et al.  Optogenetic manipulation of neural circuits in awake marmosets. , 2016, Journal of neurophysiology.

[22]  Yunyan Wang,et al.  Distinct Subthreshold Mechanisms Underlying Rate-Coding Principles in Primate Auditory Cortex , 2016, Neuron.

[23]  Andrew C. N. Chen,et al.  Intact skull chronic windows for mesoscopic wide-field imaging in awake mice , 2016, Journal of Neuroscience Methods.

[24]  Anabela Da Silva,et al.  Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light , 2016, Journal of biomedical optics.

[25]  David A. Leopold,et al.  Marmosets: A Neuroscientific Model of Human Social Behavior , 2016, Neuron.

[26]  Bruno Mota,et al.  Cortical folding scales universally with surface area and thickness, not number of neurons , 2015, Science.

[27]  David A. Leopold,et al.  Brains, Genes, and Primates , 2015, Neuron.

[28]  Chia-Chun Hung,et al.  Functional Mapping of Face-Selective Regions in the Extrastriate Visual Cortex of the Marmoset , 2015, The Journal of Neuroscience.

[29]  Winrich A. Freiwald,et al.  Contrasting Specializations for Facial Motion within the Macaque Face-Processing System , 2015, Current Biology.

[30]  Samuel G. Solomon,et al.  A simpler primate brain: the visual system of the marmoset monkey , 2014, Front. Neural Circuits..

[31]  Ivo D. Popivanov,et al.  Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex , 2014, The Journal of Neuroscience.

[32]  E. Hillman Coupling mechanism and significance of the BOLD signal: a status report. , 2014, Annual review of neuroscience.

[33]  D. Church,et al.  Computed tomographic signs of acromegaly in 68 diabetic cats with hypersomatotropism , 2014, Journal of feline medicine and surgery.

[34]  Cory T. Miller,et al.  Active Vision in Marmosets: A Model System for Visual Neuroscience , 2014, The Journal of Neuroscience.

[35]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[36]  Katrin Amunts,et al.  Development of cortical folding during evolution and ontogeny , 2013, Trends in Neurosciences.

[37]  Bruno Mota,et al.  Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains , 2013, Front. Neuroanat..

[38]  K. Grill-Spector,et al.  Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle , 2011, Psychological research.

[39]  Kullervo Hynynen,et al.  Ultrasound insertion loss of rat parietal bone appears to be proportional to animal mass at submegahertz frequencies. , 2011, Ultrasound in medicine & biology.

[40]  Daniel D. Dilks,et al.  Differential selectivity for dynamic versus static information in face-selective cortical regions , 2011, NeuroImage.

[41]  A. Sassaroli Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media. , 2011, Optics letters.

[42]  Abraham Z. Snyder,et al.  Imaging of Functional Connectivity in the Mouse Brain , 2011, PloS one.

[43]  Greg O. Horne,et al.  Controlling low-level image properties: The SHINE toolbox , 2010, Behavior research methods.

[44]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[45]  David A Boas,et al.  Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. , 2009, Optics express.

[46]  Matthew W Spitzer,et al.  Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing , 2009, The European journal of neuroscience.

[47]  Yevgeniy B. Sirotin,et al.  Anticipatory Hæmodynamic Signals in Sensory Cortex , 2009, Nature.

[48]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[49]  D. Bendor,et al.  Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. , 2008, Journal of neurophysiology.

[50]  Valery V. Tuchin,et al.  Optical Clearing of Cranial Bone , 2008 .

[51]  Israel Nelken,et al.  Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals. , 2008, Journal of neurophysiology.

[52]  Elizabeth M C Hillman,et al.  Optical brain imaging in vivo: techniques and applications from animal to man. , 2007, Journal of biomedical optics.

[53]  Anna W Roe,et al.  Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys. , 2007, Applied optics.

[54]  Valery V. Tuchin,et al.  Optical properties of human cranial bone in the spectral range from 800 to 2000 nm , 2006, Saratov Fall Meeting.

[55]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[56]  G. Orban,et al.  Charting the Lower Superior Temporal Region, a New Motion-Sensitive Region in Monkey Superior Temporal Sulcus , 2006, The Journal of Neuroscience.

[57]  Huib Versnel,et al.  Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex , 2006, The European journal of neuroscience.

[58]  H. Ojima,et al.  Isofrequency band-like zones of activation revealed by optical imaging of intrinsic signals in the cat primary auditory cortex. , 2005, Cerebral cortex.

[59]  M. Stryker,et al.  Fine functional organization of auditory cortex revealed by Fourier optical imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Israel Nelken,et al.  Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. , 2004, Journal of neurophysiology.

[61]  Nadya Ugryumova,et al.  Measurement of bone mineral density via light scattering. , 2004, Physics in medicine and biology.

[62]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[63]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[64]  David R Moore,et al.  Optical imaging of intrinsic signals in ferret auditory cortex: responses to narrowband sound stimuli. , 2002, Journal of neurophysiology.

[65]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[66]  J. G. Walker,et al.  Analysis of the spatial distribution of polarized light backscattered from layered scattering media. , 2002, Journal of biomedical optics.

[67]  I. Yaroslavsky,et al.  Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. , 2002, Physics in medicine and biology.

[68]  J. Pettigrew,et al.  Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat. , 2001, Journal of neurophysiology.

[69]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[70]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[71]  Robert V. Harrison,et al.  Optical Imaging of Intrinsic Signals in Chinchilla Auditory Cortex , 1998, Audiology and Neurotology.

[72]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[73]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[74]  D T Delpy,et al.  Measurement of the optical properties of the skull in the wavelength range 650-950 nm , 1993, Physics in medicine and biology.

[75]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[76]  R. M. Siegel,et al.  High-resolution optical imaging of functional brain architecture in the awake monkey. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Ts'o,et al.  Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[79]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  Zhu,et al.  Polarization memory of multiply scattered light. , 1989, Physical review. B, Condensed matter.

[81]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[82]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[83]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[84]  J. Kaas The origin and evolution of neocortex: From early mammals to modern humans. , 2019, Progress in brain research.

[85]  W. H. Kimbel,et al.  Cranial vault thickness in primates: Homo erectus does not have uniquely thick vault bones. , 2016, Journal of human evolution.

[86]  Yoshinao Kajikawa,et al.  Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[87]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[88]  Doris Y. Tsao,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 References Movies S1 to S3 Functional Compartmentalization and Viewpoint Generalization within the Macaque Face-processing System , 2022 .