Vibrational transition moments of CH4 from first principles

New nine-dimensional (9D), ab initio electric dipole moment surfaces (DMSs) of methane in its ground electronic state are presented. The DMSs are computed using an explicitly correlated coupled cluster CCSD(T)-F12 method in conjunction with an F12-optimized correlation consistent basis set of the TZ-family. A symmetrized molecular bond representation is used to parameterise these 9D DMSs in terms of sixth-order polynomials. Vibrational transition moments as well as band intensities for a large number of IR-active vibrational bands of 12CH4 are computed by vibrationally averaging the ab initio dipole moment components. The vibrational wavefunctions required for these averages are computed variationally using the program TROVE and a new ‘spectroscopic’ 12CH4 potential energy surface. The new DMSs will be used to produce a hot line list for 12CH4.

[1]  L. Brown,et al.  First Assignment and Line Strengths of the 4ν4 Band of 12CH4 near 1.9 μm , 2001 .

[2]  L. Brown,et al.  The intensities of methane in the 3-5 mu m region revisited , 2000 .

[3]  B. M. Fulk MATH , 1992 .

[4]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[5]  V. Tyuterev,et al.  Calculated rJ2-type effective dipole moment parameters for fundamental bands of tetrahedral XY4 molecules , 1991 .

[6]  P. Jensen,et al.  A new "spectroscopic" potential energy surface for formaldehyde in its ground electronic state. , 2011, The Journal of chemical physics.

[7]  M. Quack,et al.  Global Analytical Potential Hypersurface for Large Amplitude Nuclear Motion and Reactions in Methane II. Characteristic Properties of the Potential and Comparison to Other Potentials and Experimental Information , 2004 .

[8]  J. Tennyson,et al.  An ab initio variationally computed room-temperature line list for (32)S(16)O3. , 2013, Physical chemistry chemical physics : PCCP.

[9]  V. Boudon,et al.  Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm−1 , 2009 .

[10]  P. Jensen,et al.  Dipole moment and rovibrational intensities in the electronic ground state of NH3: bridging the gap between ab initio theory and spectroscopic experiment. , 2005, The Journal of chemical physics.

[11]  P. Jensen,et al.  Vibrational energies of PH3 calculated variationally at the complete basis set limit. , 2008, The Journal of chemical physics.

[12]  J. Beaulieu,et al.  METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B? , 2010, 1007.0324.

[13]  Joel M. Bowman,et al.  Tests of MULTIMODE calculations of rovibrational energies of CH4 , 2006 .

[14]  J. Tennyson,et al.  Variational calculations of vibrational energy levels for XY4 molecules: 2. Bending states of methane , 2002 .

[15]  J. Tennyson,et al.  A variationally computed T = 300 K line list for NH3. , 2009, The journal of physical chemistry. A.

[16]  P. Jensen,et al.  Potential parameters of PH3 obtained by simultaneous fitting of ab initio data and experimental vibrational band origins , 2003 .

[17]  P. Taylor,et al.  An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers , 1995 .

[18]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[19]  Journal of Molecular Spectroscopy , 2022 .

[20]  L. Brown,et al.  Analysis of the Interacting Octad System of (12)CH(4). , 2001, Journal of molecular spectroscopy.

[21]  D. Schwenke,et al.  Vibrational energy levels for CH4 from an ab initio potential. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  Sergei N. Yurchenko,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012 .

[23]  Hua-Gen Yu A general rigorous quantum dynamics algorithm to calculate vibrational energy levels of pentaatomic molecules , 2009 .

[24]  J. Tennyson,et al.  Forbidden rotational and rovibrational transitions in H3+: First principles calculations , 1990 .

[25]  P. Jensen,et al.  Theoretical rotation-torsion spectra of HSOH. , 2010, Physical chemistry chemical physics : PCCP.

[26]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[27]  S. Mikhailenko,et al.  GOSAT-2009 methane spectral line list in the 5550–6236 cm−1 range , 2010 .

[28]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[29]  A. Nikitin,et al.  First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm(-1). , 2013, Physical chemistry chemical physics : PCCP.

[30]  J. Tennyson,et al.  Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study , 2011 .

[31]  A. Császár,et al.  Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. , 2009, The Journal of chemical physics.

[32]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[33]  Hua-Gen Yu Converged quantum dynamics calculations of vibrational energies of CH4 and CH3D using an ab initio potential. , 2004, The Journal of chemical physics.

[34]  Jonathan Tennyson,et al.  Calculated rotational and ro-vibrational transitions in the spectrum of H3+ , 1988 .

[35]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[36]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[37]  Michel Loete,et al.  Line strengths of the ν3 - ν4 band of methane , 1985 .

[38]  Carl Eckart,et al.  Some Studies Concerning Rotating Axes and Polyatomic Molecules , 1935 .

[39]  A. Nikitin,et al.  New dipole moment surfaces of methane , 2013 .

[40]  J. Tennyson,et al.  A computed room temperature line list for phosphine , 2013, 1302.1997.

[41]  The Near-Infrared Spectrum of the Brown Dwarf Gliese 229B , 1996, astro-ph/9606056.

[42]  S. Tashkun,et al.  New Analysis of the Pentad System of Methane and Prediction of the (Pentad-Pentad) Spectrum , 1994 .

[43]  A. Nikitin Modeling of vibrational energy levels of methane from the Ab initio constructed potential energy surface , 2009 .

[44]  Brown,et al.  The Hot Bands of Methane between 5 and 10 μm , 1996, Journal of molecular spectroscopy.

[45]  V. Boudon,et al.  The vibrational levels of methane obtained from analyses of high-resolution spectra , 2006 .

[46]  Joel M. Bowman,et al.  Variational calculations of rovibrational energies of CH4 and isotopomers in full dimensionality using an ab initio potential , 1999 .

[47]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[48]  P. Jensen,et al.  A theoretical-spectroscopy, ab initio-based study of the electronic ground state of 121SbH3 , 2010 .

[49]  P. Cassam-Chenaï,et al.  Ab initio calculation of the rotational spectrum of methane vibrational ground state. , 2012, The Journal of chemical physics.

[50]  N. Reuter,et al.  The vibrational overtones of SiH4 isotopomers: experimental wavenumbers, assignment, ab initio dipole moment surfaces and intensities , 2001 .

[51]  A. Nikitin,et al.  Rotational and vibrational energy levels of methane calculated from a new potential energy surface , 2011 .

[52]  L. Halonen Internal coordinate Hamiltonian model for Fermi resonances and local modes in methane , 1997 .

[53]  J. Tennyson,et al.  Variational calculation of highly excited rovibrational energy levels of H2O2. , 2013, The journal of physical chemistry. A.

[54]  Loëte,et al.  Simultaneous Determination of Force Constants and Dipole Moment Derivatives of Methane. , 1998, Journal of molecular spectroscopy.

[55]  Joel M. Bowman,et al.  Variational Calculations of Rotational−Vibrational Energies of CH4 and Isotopomers Using an Adjusted ab Initio Potential , 2000 .

[56]  Jonathan Tennyson,et al.  UKIRT Observations of the Impact and Consequences of Comet Shoemaker-Levy 9 on Jupiter , 1997 .

[57]  T. Carrington,et al.  Deficiencies of the bend symmetry coordinates used for methane , 2003 .

[58]  L. Brown,et al.  Line strengths of the ?2 + ?3 and ?3 - ?2 bands of methane (12CH4)1 , 1992 .

[59]  K. Hirao,et al.  Highly accurate potential-energy and dipole moment surfaces for vibrational state calculations of methane. , 2006, The Journal of chemical physics.

[60]  J. Tennyson,et al.  Variational calculations of vibrational energy levels for XY4 molecules 1. Stretching states , 2002 .

[61]  J. Tennyson,et al.  On the use of variational wavefunctions in calculating vibrational band intensities , 1992 .

[62]  Ralf Schneider,et al.  Ab initio modeling of molecular IR spectra of astrophysical interest: Application to CH4 , 2009 .

[63]  T. Carrington,et al.  Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane. , 2004, The Journal of chemical physics.

[64]  P. Jensen,et al.  Theoretical ROVibrational Energies (TROVE) : A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules , 2007 .

[65]  Donald G Truhlar,et al.  Calculation of converged rovibrational energies and partition function for methane using vibrational-rotational configuration interaction. , 2004, The Journal of chemical physics.

[66]  M. Quack,et al.  Dipole moment function and equilibrium structure of methane in an analytical, anharmonic nine‐dimensional potential surface related to experimental rotational constants and transition moments by quantum Monte Carlo calculations , 1994 .

[67]  D. Schwenke Towards accurate ab initio predictions of the vibrational spectrum of methane. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[68]  T. Carrington,et al.  A contracted basis-Lanczos calculation of vibrational levels of methane: Solving the Schrödinger equation in nine dimensions , 2003 .

[69]  B. V. Noumerov A Method of Extrapolation of Perturbations , 1924 .

[70]  R. Lemus,et al.  Equivalent rotations associated with the permutation inversion group revisited: symmetry projection of the rovibrational functions of methane , 2011 .

[71]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[73]  Jonathan Tennyson,et al.  Water in the atmosphere of HD 209458b from 3.6–8 μm IRAC photometric observations in primary transit , 2010 .

[74]  J. Champion,et al.  Spherical top data system (STDS) software for the simulation of spherical top spectra , 1998 .

[75]  T. Carrington,et al.  A finite basis representation Lanczos calculation of the bend energy levels of methane , 2003 .

[76]  W. Thiel,et al.  High-level ab initio potential energy surfaces and vibrational energies of H2CS. , 2011, The Journal of chemical physics.

[77]  G. S. Baronov,et al.  High-Resolution Spectroscopy of (Pentad-Dyad) and (Octad-Pentad) Hot Bands of Methane in a Supersonic Jet , 1993 .

[78]  J. Stanton A refined estimate of the bond length of methane , 1999 .