A parallel architecture for data compression

The authors describe a parallel algorithm and architecture for implementing the LZ technique for data compression. Data compression is the reduction of redundancy in data representation in order to decrease storage and communication costs. The LZ-based compression method is a very powerful technique and gives very high compression efficiency for text as well as image data. The proposed architecture is systolic and uses the principles of pipelining and parallelism in order to obtain high speed and throughput. The order of complexity of the computations is reduced from n/sup 2/ to n. The data compression hardware can be integrated into real time systems so that data can be compressed and decompressed on-the-fly. The basic processor cell for the systolic array is currently being implemented using CMOS VLSI technology.<<ETX>>

[1]  Amar Mukherjee,et al.  Introduction to Nmos and Cmos Vlsi Systems Design , 1986 .

[2]  Jorma Rissanen,et al.  Compression of Black-White Images with Arithmetic Coding , 1981, IEEE Trans. Commun..

[3]  S. Golomb Run-length encodings. , 1966 .

[4]  Robert G. Gallager,et al.  Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.

[5]  Mostafa A. Bassiouni,et al.  Enhancing arithmetic and tree-based coding , 1989, Inf. Process. Manag..

[6]  James A. Storer,et al.  Data compression via textual substitution , 1982, JACM.

[7]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[8]  James A. Storer,et al.  Parallel algorithms for data compression , 1985, JACM.

[9]  R. M. Lea,et al.  Text Compression with an Associative Parallel Processor , 1978, Comput. J..

[10]  Solomon W. Golomb,et al.  Run-length encodings (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[11]  Mostafa A. Bassiouni,et al.  Data Compression in Scientific and Statistical Databases , 1985, IEEE Transactions on Software Engineering.

[12]  Arie Shoshani,et al.  A Compression Technique for Large Statistical Data-Bases , 1981, VLDB.

[13]  Mostafa A. Bassiouni,et al.  A multi-group technique for data compression , 1982, SIGMOD '82.

[14]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[15]  Mostafa A. Bassiouni,et al.  Adaptive and pipelined VLSI designs for tree-based codes , 1989, Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[16]  Arie Shoshani,et al.  Efficient Access of Compressed Data , 1980, VLDB.

[17]  Glen G. Langdon,et al.  An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..

[18]  Paula B. Hawthorn,et al.  Microprocessor Assisted Tuple Access, Decompression and Assembly for Statistical Database Systems , 1982, VLDB.

[19]  M. Bergman,et al.  "Introduction to nMOS and cMOS VLSI Systems Design" by Amar Mukherjee, from: Prentice-Hall, Englewood Cliffs, NJ 07632, U.S.A , 1986, Integr..

[20]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[21]  Robert A. Wagner,et al.  Common phrases and minimum-space text storage , 1973, CACM.

[22]  Mostafa A. Bassiouni,et al.  Utilization of Character Reference Locality for Efficient Storage of Data Base , 1983, SSDBM.

[23]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[24]  Clifford A. Lynch,et al.  Application of Data Compression to a Large Bibliographic Data Base , 1981, VLDB.

[25]  Mostafa A. Bassiouni,et al.  A VLSI chip for efficient transmission and retrieval of information , 1987, SIGIR '87.

[26]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[27]  K. A. Hazboun,et al.  A Multi-Tree Automation for Efficient Data Transmission , 1983, SSDBM.