Role of advanced MR imaging modalities in diagnosing cerebral gliomas

The objective of this study was to evaluate the potential role of newly developed, advanced magnetic resonance (MR) imaging techniques (spectroscopy, diffusion and perfusion imaging) in diagnosing brain gliomas, with special reference to histological typing and grading, treatment planning and posttreatment follow-up. Conventional MR imaging enables the detection and localisation of neoplastic lesions, as well as providing, in typical cases, some indication about their nature. However, it has limited sensitivity and specificity in evaluating histological type and grade, delineating margins and differentiating oedema, tumour and treatment side-effects. These limitations can be overcome by supplementing the morphological data obtained with conventional MR imaging with the metabolic, structural and perfusional information provided by new MR techniques that are increasingly becoming an integral part of routine MR studies. Incorporation of such new MR techniques can lead to more comprehensive and precise diagnoses that can better assist surgeons in determining prognosis and planning treatment strategies. In addition, the recent development of new, more effective, treatments for cerebral glioma strongly relies on morphofunctional MR imaging with its ability to provide a biological interpretation of these characteristically heterogeneous tumours.RiassuntoLo scopo del lavoro è di illustrare le potenzialità delle nuove e più avanzate modalità di studio RM (spettroscopia, diffusione, perfusione) nella diagnostica dei gliomi cerebrali, con particolare riferimento alla definizione dell’istotipo e del grading, alla pianificazione del trattamento e al follow-up post-trattamento. Con la RM di base è possibile nei casi tipici identificare la lesione neoplastica, stabilirne la sede e la topografia e proporre un’ipotesi di natura. Vi è però una limitata sensibilità e specificità nella definizione dell’istotipo e del grading, nell’individuazione dei margini neoplastici e nella differenziazione tra tumore ed edema o effetti del trattamento. È necessario pertanto integrare le informazioni fornite dalla RM di base con le informazioni di carattere metabolico, strutturale ed emodinamico fornite dalle più recenti tecniche RM, oramai parte integrante di uno studio di routine. In tal modo sono possibili diagnosi sempre più precise ed esaustive per il chirurgo, necessarie per definire la prognosi e l’impostazione delle diverse strategie terapeutiche. Inoltre, il recente sviluppo di nuovi e più efficaci trattamenti ha reso sempre più necessario uno studio RM morfofunzionale con cui ottenere in maniera non invasiva una “neuropatologia in vivo” e quindi un’interpretazione biologica della eterogeneità tipica di tali tumori.

[1]  G. Tedeschi,et al.  Spectroscopic, diffusion and perfusion magnetic resonance imaging at 3.0 Tesla in the delineation of glioblastomas: preliminary results. , 2006, Journal of experimental & clinical cancer research : CR.

[2]  Bahattin Hakyemez,et al.  Evaluation of different cerebral mass lesions by perfusion‐weighted MR imaging , 2006, Journal of magnetic resonance imaging : JMRI.

[3]  E. A. Chiocca,et al.  In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. , 2002, Radiology.

[4]  H. Abe,et al.  Quantitative assessment of gliomas by proton magnetic resonance spectroscopy. , 2007, Anticancer research.

[5]  Hong Liu,et al.  Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. , 2007, International journal of radiation oncology, biology, physics.

[6]  S. Brockstedt,et al.  Tumor extension in high-grade gliomas assessed with diffusion magnetic resonance imaging: values and lesion-to-brain ratios of apparent diffusion coefficient and fractional anisotropy , 2006, Acta radiologica.

[7]  R. DeLaPaz,et al.  Multisection 1H Magnetic Resonance Spectroscopic Imaging Assessment of Glioma Response to Chemotherapy , 2005, Journal of Neuro-Oncology.

[8]  K. Kono,et al.  The role of diffusion-weighted imaging in patients with brain tumors. , 2001, AJNR. American journal of neuroradiology.

[9]  Tommaso Scarabino,et al.  Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy , 2006, Neuroradiology.

[10]  J G Pipe,et al.  In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. , 1995, AJNR. American journal of neuroradiology.

[11]  M P Lichy,et al.  [Application of (1)H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors]. , 2006, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[12]  L Verhey,et al.  A preliminary study of the prognostic value of proton magnetic resonance spectroscopic imaging in gamma knife radiosurgery of recurrent malignant gliomas. , 2000, Neurosurgery.

[13]  Thomas L Chenevert,et al.  Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. , 2006, Magnetic resonance imaging.

[14]  M. Lemort,et al.  Progress in magnetic resonance imaging of brain tumours , 2007, Current opinion in oncology.

[15]  M. D. Jenkinson,et al.  Advanced MRI in the management of adult gliomas , 2007, British journal of neurosurgery.

[16]  B. Nan,et al.  Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. , 2005, AJR. American journal of roentgenology.

[17]  Z. Wu,et al.  Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? , 2006, The British journal of radiology.

[18]  T. Mikkelsen,et al.  Associations among Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficients, and Image-Guided Histopathology with Special Attention to Radiation Necrosis , 2004, Neurosurgery.

[19]  Glyn Johnson,et al.  Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2004, AJNR. American journal of neuroradiology.

[20]  Paul M. Parizel,et al.  Magnetic Resonance Imaging of the Brain , 2010 .

[21]  Glyn Johnson,et al.  High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. , 2002, Radiology.

[22]  U. Salvolini,et al.  3.0-T morphological and angiographic brain imaging: a 5-years experience , 2007, La radiologia medica.

[23]  P. Kleihues,et al.  Epidemiology and etiology of gliomas , 2005, Acta Neuropathologica.

[24]  Tommaso Scarabino,et al.  Proton MR spectroscopy of the brain at 3 T: an update , 2007, European Radiology.

[25]  S. Nelson Multivoxel magnetic resonance spectroscopy of brain tumors. , 2003, Molecular cancer therapeutics.

[26]  Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. , 1997 .

[27]  V. Jellús,et al.  Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. , 2001, AJNR. American journal of neuroradiology.

[28]  Elias R Melhem,et al.  Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[29]  V. L. Doyle,et al.  Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy , 2003, Magnetic resonance in medicine.

[30]  M P Carol,et al.  MR-spectroscopy guided target delineation for high-grade gliomas. , 2001, International journal of radiation oncology, biology, physics.

[31]  P. Pattany,et al.  Effects of physiologic human brain motion on proton spectroscopy: quantitative analysis and correction with cardiac gating. , 2002, AJNR. American journal of neuroradiology.

[32]  R. Prost,et al.  Proton MR spectroscopy of the brain. , 1999, Neuroimaging clinics of North America.

[33]  S. Cha,et al.  Update on brain tumor imaging: from anatomy to physiology. , 2006, AJNR. American journal of neuroradiology.

[34]  C. Eskey,et al.  Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. , 2004, AJNR. American journal of neuroradiology.

[35]  Glyn Johnson,et al.  Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. , 2003, AJNR. American journal of neuroradiology.

[36]  Ying Lu,et al.  Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients , 2002, Journal of magnetic resonance imaging : JMRI.

[37]  Z L Gokaslan,et al.  Limitations of stereotactic biopsy in the initial management of gliomas. , 2001, Neuro-oncology.

[38]  M. Décorps,et al.  Methodology of brain perfusion imaging , 2001, Journal of magnetic resonance imaging : JMRI.

[39]  Susan M. Chang,et al.  Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. , 2005, Journal of neurosurgery.

[40]  J. Guyotat,et al.  Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors , 2006, Neuroradiology.

[41]  M. Leach,et al.  Could assessment of glioma methylene lipid resonance by in vivo (1)H-MRS be of clinical value? , 2003, The British journal of radiology.

[42]  Michael H Lev,et al.  Dynamic magnetic resonance perfusion imaging of brain tumors. , 2004, The oncologist.

[43]  Mauricio Castillo,et al.  Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. , 2007, AJR. American journal of roentgenology.

[44]  G. Johnson,et al.  Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. , 2003, AJNR. American journal of neuroradiology.

[45]  T. Stadnik,et al.  Prognostic value of perfusion-weighted imaging in brain glioma: a prospective study , 2006, Acta Neurochirurgica.

[46]  M. Tosetti,et al.  3.0-T functional brain imaging: a 5-year experience , 2007, La radiologia medica.

[47]  Daniel B Vigneron,et al.  In vivo molecular imaging for planning radiation therapy of gliomas: An application of 1H MRSI , 2002, Journal of magnetic resonance imaging : JMRI.

[48]  P. Black,et al.  Microvessel density is a prognostic indicator for patients with astroglial brain tumors , 1996, Cancer.

[49]  W P Dillon,et al.  Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. , 2001, AJNR. American journal of neuroradiology.

[50]  N. Bulakbaşı,et al.  Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. , 2003, AJNR. American journal of neuroradiology.

[51]  S. Nelson Multivoxel magnetic resonance spectroscopy of brain tumors. , 2003, Molecular cancer therapeutics.

[52]  K-H Chang,et al.  3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. , 2006, AJNR. American journal of neuroradiology.

[53]  L Verhey,et al.  Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. , 2001, AJNR. American journal of neuroradiology.

[54]  Hong Liu,et al.  Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury , 2007, Journal of Neuro-Oncology.

[55]  V. Papanastassiou,et al.  The present and future management of malignant brain tumours: surgery, radiotherapy, chemotherapy , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[56]  J. Rees Advances in magnetic resonance imaging of brain tumours , 2003, Current opinion in neurology.

[57]  H. Lanfermann,et al.  Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions , 2002, Neuroradiology.

[58]  G. Tedeschi,et al.  Role of perfusion-weighted imaging at 3 Tesla in the assessment of malignancy of cerebral gliomas , 2008, La radiologia medica.

[59]  Michael H Lev,et al.  Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. , 2004, AJNR. American journal of neuroradiology.

[60]  Franklyn A Howe,et al.  1H MR spectroscopy of brain tumours and masses , 2003, NMR in biomedicine.

[61]  C. Metreweli,et al.  Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? , 2002, Clinical radiology.

[62]  M. Ferrante,et al.  Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumours , 2007, La radiologia medica.