Laminated cisternae of the rough endoplasmic reticulum induced by coronavirus MHV-A59 infection.

The infection of murine fibroblasts of the sac- line with a coronavirus, mouse hepatitis virus strain A59 (MHV-A59), results in a novel modification to some cisternae of the rough endoplasmic reticulum (RER). From 8 hours post infection (h.p.i.) we see in thin sections pairs of cisternae closely, stably and uniformly aligned. Serial sectioning shows that the regions of pairing or lamination extend for many thousands of nm in two dimensions, with the spacing between the juxtaposed membranes remaining very uniform at about 18 nm. These structures appear coincident with the onset of accumulation of the viral glycoprotein E1 in the RER membrane but 2 hours after the viral glycoprotein E2 can first be detected there. Ribosomes are excluded from the paired cisternal surfaces, while budding of progeny virions has never been seen at the cisternal membranes facing the cytosol, although ribosomes bind there. The lumina of paired cixternae are usually devoid of virions which, however, accumulate in areas where the paired cisternae diverge. Electron immunocytochemistry shows that both E1 and E2 glycoproteins are abundant in the paired cisternae. Following labelling for the E1 glycoprotein we see a periodic fine structure, rows of "beads" with a centre to centre spacing of about 7.5 nm, in the region between the paired membranes. In oblique sections of this region in cells fixed as if for the immunoperoxidase labelling, but omitting all its steps we see parallel rows of "beads" separated by about 7 nm. We suggest that the membrane spanning viral glycoprotein E1 together with viral nucleocapsids may be involved in laminating cisternae of the RER.