Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

[1]  B. Straumal,et al.  Formation regularities of grain-boundary interlayers of the α-Ti phase in binary titanium alloys , 2016, Russian Journal of Non-Ferrous Metals.

[2]  B. Straumal,et al.  Growth of (αTi) grain-boundary layers in Ti–Co alloys , 2016, Russian Journal of Non-Ferrous Metals.

[3]  B. Straumal,et al.  Grain boundary wetting and premelting in the Cu-Co alloys , 2014 .

[4]  R. Valiev,et al.  Grain boundary films in Al–Zn alloys after high pressure torsion , 2014 .

[5]  Kazuki Yoshida,et al.  Ti–6Al–4V alloy with an ultrafine-grained microstructure exhibiting low-temperature–high-strain-rate superplasticity , 2013 .

[6]  S. Semiatin,et al.  Low Temperature Superplasticity of Ti-6Al-4V Processed by Warm Multidirectional Forging , 2012 .

[7]  S. Malysheva,et al.  Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging , 2012 .

[8]  B. Straumal,et al.  Grain Boundary Wetting by a Second Solid Phase in the Zr-Nb Alloys , 2012, Journal of Materials Engineering and Performance.

[9]  S. Semiatin,et al.  Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing , 2011 .

[10]  S. Zherebtsov,et al.  Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation , 2010 .

[11]  K. Nakajima,et al.  Quantitative three-dimensional characterization of pearlite spheroidization , 2010 .

[12]  Jilt Sietsma,et al.  Three-dimensional analysis of microstructures in titanium , 2010 .

[13]  S. Semiatin,et al.  Constitutive Modeling of Low-Temperature Superplastic Flow of Ultrafine Ti-6Al-4V Sheet Material , 2010 .

[14]  Amit K. Ghosh,et al.  Plastic Flow and Microstructure Evolution during Low-Temperature Superplasticity of Ultrafine Ti-6Al-4V Sheet Material , 2010 .

[15]  A. Kruglov,et al.  Processing properties of nano- and submicro-crystalline Ti–6Al–4V titanium alloy , 2009 .

[16]  S. Curiotto,et al.  Solid/liquid interfacial energy and wetting of Cu at Co surfaces and grain boundaries , 2009 .

[17]  Amit K. Ghosh,et al.  Low-Temperature Coarsening and Plastic Flow Behavior of an Alpha/Beta Titanium Billet Material with an Ultrafine Microstructure , 2008 .

[18]  F. Froes,et al.  Production of Ti-6Al-4V Sheets for Low Temperature Superplastic Forming , 2007 .

[19]  S. Semiatin,et al.  Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing , 2006 .

[20]  A. Chokshi Cavity nucleation and growth in superplasticity , 2005 .

[21]  S. Semiatin,et al.  Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing , 2004 .

[22]  E. .. Mittemeijer,et al.  Grain boundary wetting by a solid phase; microstructural development in a Zn–5 wt% Al alloy , 2004 .

[23]  D. R. Barker,et al.  Diffusion coefficients for modeling the heat treatment of Ti-6Al-4V , 2004 .

[24]  S. Semiatin,et al.  Coarsening behavior of an alpha-beta titanium alloy , 2004 .

[25]  K. Takashima,et al.  Titanium’s high-temperature elastic constants through the hcp–bcc phase transformation , 2004 .

[26]  S. L. Semiatin,et al.  Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V , 2003 .

[27]  A. Sergueeva,et al.  Superplastic behaviour of ultrafine-grained Ti–6A1–4V alloys , 2002 .

[28]  P. Wynblatt,et al.  Correlation of Grain Boundary Character with Wetting Behavior , 2000 .

[29]  H. Aaronson,et al.  Aspects of interphase boundary structure in diffusional phase transformations , 2000 .

[30]  Y. Mishin,et al.  Diffusion in the Ti–Al system , 2000 .

[31]  Howard Kuhn,et al.  Mechanical testing and evaluation , 2000 .

[32]  Jeffrey Wadsworth,et al.  Superplasticity in metals and ceramics , 1997 .

[33]  G. Salishchev,et al.  Effect of interface energy anisotropy on thermal stability and transformation of lamellar Structures: II. Transformation of lamellae† , 1995 .

[34]  G. Salishchev,et al.  Effect of Interface Energy Anisotropy on Thermal Stability and Transformation of Lamellar Structures. I. Behaviour of Two‐Phase Systems under Annealing as Related to Particle Shape Equilibrium , 1995 .

[35]  S. Mukhtarov,et al.  Submicrocrystalline and Nanocrystalline Structure Formation in Materials and Search for Outstanding Superplastic Properties , 1994 .

[36]  Cui Jianzhong,et al.  A cavity nucleation model during high temperature creep deformation of metals , 1993 .

[37]  A. Mukherjee,et al.  The effects of the α/β phase proportion on the superplasticity of Ti-6Al-4V and iron-modified Ti-6Al-4V , 1992 .

[38]  A. Mukherjee,et al.  α Grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V , 1991 .

[39]  H. Aaronson,et al.  Interphase boundary structures associated with diffusional phase transformations in Ti-base alloys , 1990 .

[40]  Hermann Riedel,et al.  Fracture at high temperatures , 1987 .

[41]  Rishi Raj,et al.  Nucleation of cavities at second phase particles in grain boundaries , 1978 .

[42]  R. C. Gifkins Grain-boundary sliding and its accommodation during creep and superplasticity , 1976 .

[43]  J. W. Martin,et al.  Stability of microstructure in metallic systems , 1976 .

[44]  Amiya K. Mukherjee,et al.  The rate controlling mechanism in superplasticity , 1971 .

[45]  T. Langdon Grain boundary sliding as a deformation mechanism during creep , 1970 .

[46]  A. Ball,et al.  Superplasticity in the Aluminium–Zinc Eutectoid , 1969 .

[47]  J. E. Dorn,et al.  CORRELATIONS BETWEEN HIGH-TEMPERATURE CREEP BEHAVIOR AND STRUCTURE. , 1969 .

[48]  N. D. Reca,et al.  Autodifusion de titanio beta y hafnio beta , 1968 .

[49]  C. McHargue,et al.  Self-diffusion in body-centered cubic titanium-vanadium alloys☆ , 1968 .

[50]  T. S. Lundy,et al.  DIFFUSION OF Ti44 AND V48 IN TITANIUM , 1964 .