Discrete gravity on random tensor network and holographic Rényi entropy

A bstractIn this paper we apply the discrete gravity and Regge calculus to tensor networks and Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We construct the boundary many-body quantum state |Ψ〉 using random tensor networks as the holographic mapping, applied to the Wheeler-deWitt wave function of bulk Euclidean discrete gravity in 3 dimensions. The entanglement Rényi entropy of |Ψ〉 is shown to holographically relate to the on-shell action of Einstein gravity on a branch cover bulk manifold. The resulting Rényi entropy Sn of |Ψ〉 approximates with high precision the Rényi entropy of ground state in 2-dimensional conformal field theory (CFT). In particular it reproduces the correct n dependence. Our results develop the framework of realizing the AdS3/CFT2 correspondence on random tensor networks, and provide a new proposal to approximate the CFT ground state.

[1]  Román Orús,et al.  Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.

[2]  Aram W. Harrow,et al.  The Church of the Symmetric Subspace , 2013, 1308.6595.

[3]  M. Kisielowski,et al.  Asymptotic analysis of the EPRL model with timelike tetrahedra , 2017, Classical and Quantum Gravity.

[4]  G. Vidal,et al.  Spacetime Symmetries and Conformal Data in the Continuous Multiscale Entanglement Renormalization Ansatz. , 2017, Physical review letters.

[5]  A. Castro,et al.  UvA-DARE ( Digital Academic Repository ) Wilson Lines and Entanglement Entropy in Higher Spin Gravity , 2013 .

[6]  L. Freidel,et al.  On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.

[7]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[8]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[9]  Muxin Han,et al.  Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy , 2016, 1610.02134.

[10]  Hal M. Haggard,et al.  SL(2,C) Chern–Simons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry , 2014, 1412.7546.

[11]  D. Jafferis,et al.  Bulk reconstruction and the Hartle-Hawking wavefunction , 2017, 1703.01519.

[12]  B. Czech,et al.  A defect in holographic interpretations of tensor networks , 2016, Journal of High Energy Physics.

[13]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[14]  Einstein Equation from Covariant Loop Quantum Gravity in Semiclassical Continuum Limit , 2017, 1705.09030.

[15]  FUNDAMENTAL STRUCTURE OF LOOP QUANTUM GRAVITY , 2005, gr-qc/0509064.

[16]  R. Laflamme,et al.  Measuring holographic entanglement entropy on a quantum simulator , 2017, npj Quantum Information.

[17]  Patrick Hayden,et al.  Entanglement Wedge Reconstruction via Universal Recovery Channels , 2017, Physical Review X.

[18]  Bin Chen,et al.  Holographic entanglement entropy for a large class of states in 2D CFT , 2016, 1605.06753.

[19]  Yi-Zhuang You,et al.  Holographic coherent states from random tensor networks , 2017 .

[20]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[21]  C. Closset,et al.  N$$ \mathcal{N} $$ = 1 supersymmetric indices and the four-dimensional A-model , 2017, 1707.05774.

[22]  Richard Friedberg,et al.  Derivation of Regge's action from Einstein's theory of general relativity☆ , 1984 .

[23]  Tensor network and (p-adic) AdS/CFT , 2017, 1703.05445.

[24]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[25]  M. Dorigo,et al.  Measurements of the B+, B0, $ B_s^0 $ meson and $ \Lambda_b^0 $ baryon lifetimes , 2014, 1402.2554.

[26]  J. Boer,et al.  Entanglement entropy and higher spin holography in AdS3 , 2013, 1306.4347.

[27]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[28]  Sam McCandlish,et al.  Tensor network quotient takes the vacuum to the thermal state , 2015, 1510.07637.

[29]  P. E. Parker,et al.  Smooth Limits of Piecewise-Linear Approximations , 1994 .

[30]  Benjamin Bahr,et al.  Regge calculus from a new angle , 2009, 0907.4325.

[31]  Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory , 2011, 1109.0499.

[32]  Aitor Lewkowycz,et al.  Deriving covariant holographic entanglement , 2016, 1607.07506.

[33]  F. Hellmann,et al.  Lorentzian spin foam amplitudes: graphical calculus and asymptotics , 2009, 0907.2440.

[34]  C. Rovelli,et al.  Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory , 2014 .

[35]  L. Smolin Holographic relations in loop quantum gravity , 2016, 1608.02932.

[36]  P. Liu,et al.  Holographic entanglement entropy close to quantum phase transitions , 2015, 1502.03661.

[37]  Holographic representation of local bulk operators , 2006, hep-th/0606141.

[38]  Claus Kiefer,et al.  Modern Canonical Quantum General Relativity , 2008 .

[39]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[40]  B. Dittrich,et al.  Improved and Perfect Actions in Discrete Gravity , 2009, 0907.4323.

[41]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[42]  Andrew J. Ferris,et al.  Tensor Networks and Quantum Error Correction , 2013, Physical review letters.

[43]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[44]  David J. Schwab,et al.  Supervised Learning with Quantum-Inspired Tensor Networks , 2016, ArXiv.

[45]  S. Gubser,et al.  Edge length dynamics on graphs with applications to p-adic AdS/CFT , 2016, Journal of High Energy Physics.

[46]  Wei Song,et al.  Modifications to holographic entanglement entropy in warped CFT , 2016, 1610.00727.

[47]  G. Evenbly,et al.  Tensor Network States and Geometry , 2011, 1106.1082.

[48]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[49]  Arpan Bhattacharyya,et al.  Exploring the tensor networks/AdS correspondence , 2016, Journal of High Energy Physics.

[50]  M. Raamsdonk Lectures on Gravity and Entanglement , 2016, 1609.00026.

[51]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .

[52]  T. Takayanagi,et al.  From path integrals to tensor networks for the AdS/CFT correspondence , 2016, 1609.04645.

[53]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[54]  R. Myers,et al.  Holographic calculations of Rényi entropy , 2011, 1110.1084.

[55]  Xi Dong Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories. , 2016, Physical review letters.

[56]  R. Sorkin,et al.  Boundary terms in the action for the Regge calculus , 1981 .

[57]  J. Jottar,et al.  Entanglement entropy and higher spin holography in AdS3 , 2014, Journal of High Energy Physics.

[58]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[59]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[60]  S. Ross,et al.  Tensor network models of multiboundary wormholes , 2017, 1702.05984.

[61]  Aitor Lewkowycz,et al.  Generalized gravitational entropy , 2013, 1304.4926.

[62]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[63]  John Preskill,et al.  Code properties from holographic geometries , 2016, 1612.00017.

[64]  Xi Dong The gravity dual of Rényi entropy , 2016, Nature Communications.

[65]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[66]  E. Lake,et al.  The structure of fixed-point tensor network states characterizes the patterns of long-range entanglement , 2016, 1611.01140.

[67]  Alex May Tensor networks for dynamic spacetimes , 2016 .

[68]  E. Verlinde,et al.  Emergent Gravity and the Dark Universe , 2016, 1611.02269.

[69]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[70]  T. Takayanagi,et al.  Holographic Entanglement Entropy , 2016, 1609.01287.

[71]  T. Regge General relativity without coordinates , 1961 .

[72]  Markus Grassl,et al.  Invariant perfect tensors , 2016, 1612.04504.