Discrete gravity on random tensor network and holographic Rényi entropy
暂无分享,去创建一个
[1] Román Orús,et al. Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.
[2] Aram W. Harrow,et al. The Church of the Symmetric Subspace , 2013, 1308.6595.
[3] M. Kisielowski,et al. Asymptotic analysis of the EPRL model with timelike tetrahedra , 2017, Classical and Quantum Gravity.
[4] G. Vidal,et al. Spacetime Symmetries and Conformal Data in the Continuous Multiscale Entanglement Renormalization Ansatz. , 2017, Physical review letters.
[5] A. Castro,et al. UvA-DARE ( Digital Academic Repository ) Wilson Lines and Entanglement Entropy in Higher Spin Gravity , 2013 .
[6] L. Freidel,et al. On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.
[7] B. Swingle,et al. Entanglement Renormalization and Holography , 2009, 0905.1317.
[8] Xiao-Liang Qi,et al. Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.
[9] Muxin Han,et al. Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy , 2016, 1610.02134.
[10] Hal M. Haggard,et al. SL(2,C) Chern–Simons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry , 2014, 1412.7546.
[11] D. Jafferis,et al. Bulk reconstruction and the Hartle-Hawking wavefunction , 2017, 1703.01519.
[12] B. Czech,et al. A defect in holographic interpretations of tensor networks , 2016, Journal of High Energy Physics.
[13] J. Preskill,et al. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.
[14] Einstein Equation from Covariant Loop Quantum Gravity in Semiclassical Continuum Limit , 2017, 1705.09030.
[15] FUNDAMENTAL STRUCTURE OF LOOP QUANTUM GRAVITY , 2005, gr-qc/0509064.
[16] R. Laflamme,et al. Measuring holographic entanglement entropy on a quantum simulator , 2017, npj Quantum Information.
[17] Patrick Hayden,et al. Entanglement Wedge Reconstruction via Universal Recovery Channels , 2017, Physical Review X.
[18] Bin Chen,et al. Holographic entanglement entropy for a large class of states in 2D CFT , 2016, 1605.06753.
[19] Yi-Zhuang You,et al. Holographic coherent states from random tensor networks , 2017 .
[20] J. Cardy,et al. Entanglement entropy and quantum field theory , 2004, hep-th/0405152.
[21] C. Closset,et al. N$$ \mathcal{N} $$ = 1 supersymmetric indices and the four-dimensional A-model , 2017, 1707.05774.
[22] Richard Friedberg,et al. Derivation of Regge's action from Einstein's theory of general relativity☆ , 1984 .
[23] Tensor network and (p-adic) AdS/CFT , 2017, 1703.05445.
[24] Robert C. Myers,et al. Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.
[25] M. Dorigo,et al. Measurements of the B+, B0, $ B_s^0 $ meson and $ \Lambda_b^0 $ baryon lifetimes , 2014, 1402.2554.
[26] J. Boer,et al. Entanglement entropy and higher spin holography in AdS3 , 2013, 1306.4347.
[27] T. Takayanagi,et al. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.
[28] Sam McCandlish,et al. Tensor network quotient takes the vacuum to the thermal state , 2015, 1510.07637.
[29] P. E. Parker,et al. Smooth Limits of Piecewise-Linear Approximations , 1994 .
[30] Benjamin Bahr,et al. Regge calculus from a new angle , 2009, 0907.4325.
[31] Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory , 2011, 1109.0499.
[32] Aitor Lewkowycz,et al. Deriving covariant holographic entanglement , 2016, 1607.07506.
[33] F. Hellmann,et al. Lorentzian spin foam amplitudes: graphical calculus and asymptotics , 2009, 0907.2440.
[34] C. Rovelli,et al. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory , 2014 .
[35] L. Smolin. Holographic relations in loop quantum gravity , 2016, 1608.02932.
[36] P. Liu,et al. Holographic entanglement entropy close to quantum phase transitions , 2015, 1502.03661.
[37] Holographic representation of local bulk operators , 2006, hep-th/0606141.
[38] Claus Kiefer,et al. Modern Canonical Quantum General Relativity , 2008 .
[39] Daniel A. Roberts,et al. Chaos and complexity by design , 2016, 1610.04903.
[40] B. Dittrich,et al. Improved and Perfect Actions in Discrete Gravity , 2009, 0907.4323.
[41] A. Ashtekar,et al. Background independent quantum gravity: a status report , 2004 .
[42] Andrew J. Ferris,et al. Tensor Networks and Quantum Error Correction , 2013, Physical review letters.
[43] G. Evenbly,et al. Tensor Network Renormalization. , 2014, Physical review letters.
[44] David J. Schwab,et al. Supervised Learning with Quantum-Inspired Tensor Networks , 2016, ArXiv.
[45] S. Gubser,et al. Edge length dynamics on graphs with applications to p-adic AdS/CFT , 2016, Journal of High Energy Physics.
[46] Wei Song,et al. Modifications to holographic entanglement entropy in warped CFT , 2016, 1610.00727.
[47] G. Evenbly,et al. Tensor Network States and Geometry , 2011, 1106.1082.
[48] Daniel A. Roberts,et al. Chaos in quantum channels , 2015, 1511.04021.
[49] Arpan Bhattacharyya,et al. Exploring the tensor networks/AdS correspondence , 2016, Journal of High Energy Physics.
[50] M. Raamsdonk. Lectures on Gravity and Entanglement , 2016, 1609.00026.
[51] Riccardo D'Auria,et al. KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .
[52] T. Takayanagi,et al. From path integrals to tensor networks for the AdS/CFT correspondence , 2016, 1609.04645.
[53] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[54] R. Myers,et al. Holographic calculations of Rényi entropy , 2011, 1110.1084.
[55] Xi Dong. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories. , 2016, Physical review letters.
[56] R. Sorkin,et al. Boundary terms in the action for the Regge calculus , 1981 .
[57] J. Jottar,et al. Entanglement entropy and higher spin holography in AdS3 , 2014, Journal of High Energy Physics.
[58] Alexander Novikov,et al. Tensorizing Neural Networks , 2015, NIPS.
[59] Christopher T. Chubb,et al. Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.
[60] S. Ross,et al. Tensor network models of multiboundary wormholes , 2017, 1702.05984.
[61] Aitor Lewkowycz,et al. Generalized gravitational entropy , 2013, 1304.4926.
[62] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[63] John Preskill,et al. Code properties from holographic geometries , 2016, 1612.00017.
[64] Xi Dong. The gravity dual of Rényi entropy , 2016, Nature Communications.
[65] G. Vidal. Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.
[66] E. Lake,et al. The structure of fixed-point tensor network states characterizes the patterns of long-range entanglement , 2016, 1611.01140.
[67] Alex May. Tensor networks for dynamic spacetimes , 2016 .
[68] E. Verlinde,et al. Emergent Gravity and the Dark Universe , 2016, 1611.02269.
[69] P. Hayden,et al. Holographic duality from random tensor networks , 2016, 1601.01694.
[70] T. Takayanagi,et al. Holographic Entanglement Entropy , 2016, 1609.01287.
[71] T. Regge. General relativity without coordinates , 1961 .
[72] Markus Grassl,et al. Invariant perfect tensors , 2016, 1612.04504.