IMPROVEMENT OF THE F-PERCEPTORY APPROACH THROUGH MANAGEMENT OF FUZZY COMPLEX GEOGRAPHIC OBJECTS

In the real world, data is imperfect and in various ways such as imprecision, vagueness, uncertainty, ambiguity and inconsistency. For geographic data, the fuzzy aspect is mainly manifested in time, space and the function of objects and is due to a lack of precision. Therefore, the researchers in the domain emphasize the importance of modeling data structures in GIS but also their lack of adaptation to fuzzy data. The F-Perceptory approachh manages the modeling of imperfect geographic information with UML. This management is essential to maintain faithfulness to reality and to better guide the user in his decision-making. However, this approach does not manage fuzzy complex geographic objects. The latter presents a multiple object with similar or different geographic shapes. So, in this paper, we propose to improve the F-Perceptory approach by proposing to handle fuzzy complex geographic objects modeling. In a second step, we propose its transformation to the UML modeling.

[1]  Yvan Bédard,et al.  Modelling geospatial application databases using UML-based repositories aligned with international standards in geomatics , 2000, GIS '00.

[2]  Y. Bédard VISUAL MODELLING OF SPATIAL DATABASES: TOWARDS SPATIAL PVL AND UML , 1999 .

[3]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[4]  Herman Akdag,et al.  Handling Imprecise Data in Geographic Databases , 2015 .

[5]  Dimos Pantazis,et al.  Objets géographiques à limites indéterminées. Modélisation et intégration dans un modèle conceptuel de données , 1998 .

[6]  C. Ponsard Fuzzy economic spaces , 1980 .

[7]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[8]  Herman Akdag,et al.  Handling imperfect spatiotemporal information from the conceptual modeling to database structures , 2011 .

[9]  Zongmin Ma,et al.  A Literature Overview of Fuzzy Conceptual Data Modeling , 2010, J. Inf. Sci. Eng..

[10]  Stefano Spaccapietra,et al.  Uncertainty of Geographic Information and its Support in MADS , 2003 .

[11]  Zongmin Ma,et al.  Fuzzy XML data modeling with the UML and relational data models , 2007, Data Knowl. Eng..

[12]  Jean-Paul Cheylan,et al.  Conception des systèmes d'information sur l'environnement , 1997 .

[13]  A. Miralles Ingénierie des modèles pour les applications environnementales , 2006 .

[14]  Dimos Pantazis,et al.  La conception de SIG : methode et formalisme , 1996 .

[15]  Herman Akdag,et al.  F-perceptory: an approach for handling fuzziness of spatiotemporal data in geographical databases , 2016 .

[16]  S. Spaccapietra,et al.  MADS: un modèle conceptuel pour des applicationsspatio-temporelles , 1997 .

[17]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .