Anyonic Defect Branes and Conformal Blocks in Twisted Equivariant Differential (TED) K-theory

We demonstrate that twisted equivariant differential K-theory of transverse complex curves accommodates exotic charges of the form expected of codimension=2 defect branes, such as of D7-branes in IIB/F-theory on A-type orbifold singularities, but also of their dual 3-brane defects of class-S theories on M5-branes. These branes have been argued, within F-theory and the AGT correspondence, to carry special SL(2)-monodromy charges not seen for other branes, but none of these had previously been identified in the expected brane charge quantization law given by K-theory. Here we observe that it is the subtle (and previously somewhat neglected) twisting of equivariant K-theory by flat complex line bundles appearing inside orbi-singularities ("inner local systems") that makes the secondary Chern character on a punctured plane inside an A-type singularity evaluate to the twisted holomorphic de Rham cohomology which Feigin, Schechtman&Varchenko showed realizes sl(2,C)-conformal blocks, here in degree 1 -- in fact it gives the direct sum of these over all admissible fractional levels. The remaining higher-degree conformal blocks appear similarly if we assume our previously discussed"Hypothesis H"about brane charge quantization in M-theory. Since conformal blocks -- and hence these twisted equivariant secondary Chern characters -- solve the Knizhnik-Zamolodchikov equation and thus constitute representations of the braid group of motions of defect branes inside their transverse space, this provides a concrete first-principles realization of anyon statistics of -- and hence of topological quantum computation on -- defect branes in string/M-theory.

[1]  G. Isidori,et al.  Flavor hierarchies, flavor anomalies, and Higgs mass from a warped extra dimension , 2022, Physics Letters B.

[2]  T. R. Scruby,et al.  Universal fault-tolerant quantum computing with stabilizer codes , 2020, Physical Review Research.

[3]  D. Fiorenza,et al.  Twistorial cohomotopy implies Green–Schwarz anomaly cancellation , 2020, Reviews in Mathematical Physics.

[4]  J. Khoury Dark Matter Superfluidity , 2016, SciPost Physics Lecture Notes.

[5]  S. Brodsky Supersymmetric and Other Novel Features of Hadron Physics from Light-Front Holography , 2021, 2112.02453.

[6]  J. Jain,et al.  Composite anyons on a torus , 2021, Physical Review B.

[7]  D. Lancierini,et al.  On the significance of new physics in b → sℓ+ℓ− decays , 2021, Physics Letters B.

[8]  M. Neubert,et al.  Reading the footprints of the B-meson flavor anomalies , 2021, Journal of High Energy Physics.

[9]  Samuel S. Cree,et al.  Fault-Tolerant Logical Gates in Holographic Stabilizer Codes Are Severely Restricted , 2021, PRX Quantum.

[10]  J. Eisert,et al.  Holographic tensor network models and quantum error correction: a topical review , 2021, Quantum Science and Technology.

[11]  G. Isidori,et al.  Flavor non-universal Pati-Salam unification and neutrino masses , 2020, Physics Letters B.

[12]  H. Sati,et al.  Twisted cohomotopy implies M5-brane anomaly cancellation , 2020, Letters in Mathematical Physics.

[13]  H. Sati,et al.  Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers , 2020, Journal of Geometry and Physics.

[14]  D. Fiorenza,et al.  The character map in (twisted differential) non-abelian cohomology , 2020, 2009.11909.

[15]  T. Welsh,et al.  slˆ(n)N WZW conformal blocks from SU(N) instanton partition functions on C2/Zn , 2020 .

[16]  M. Manfra,et al.  Direct observation of anyonic braiding statistics , 2020, Nature Physics.

[17]  D. Fiorenza,et al.  Twisted cohomotopy implies twisted string structure on M5-branes , 2020, 2002.11093.

[18]  H. Sati,et al.  Equivariant Cohomotopy implies orientifold tadpole cancellation , 2019, 1909.12277.

[19]  D. Fiorenza,et al.  Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5 , 2019, Journal of High Energy Physics.

[20]  J. Rasmussen Staggered and affine Kac modules over A1(1) , 2018, Nuclear Physics B.

[21]  Masahide Manabe n -th parafermion W N characters from U( N ) instanton counting on C 2 = Z n , 2020 .

[22]  H. Sati,et al.  Differential Cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams , 2019, Advances in Theoretical and Mathematical Physics.

[23]  A. Varchenko,et al.  Twisted de Rham Complex on Line and Singular Vectors in sl2 Verma Modules , 2019, Symmetry, Integrability and Geometry: Methods and Applications.

[24]  H. Sati Six-dimensional gauge theories and (twisted) generalized cohomology , 2019, 1908.08517.

[25]  C. Beenakker Search for non-Abelian Majorana braiding statistics in superconductors , 2019, SciPost Physics Lecture Notes.

[26]  David Ridout,et al.  Relaxed highest-weight modules II: Classifications for affine vertex algebras , 2019, 1906.02935.

[27]  D. Fiorenza,et al.  Twisted Cohomotopy Implies M-Theory Anomaly Cancellation on 8-Manifolds , 2019, 1904.10207.

[28]  H. Sati,et al.  Ramond–Ramond fields and twisted differential K-theory , 2019, Advances in Theoretical and Mathematical Physics.

[29]  S. Schwieger Aspects of T-branes , 2019 .

[30]  Babak Haghighat,et al.  M5 branes and theta functions , 2018, Journal of High Energy Physics.

[31]  Guo Chuan Thiang,et al.  Crystallographic T-duality , 2018, Journal of Geometry and Physics.

[32]  H. Sati,et al.  Real ADE-Equivariant (co)Homotopy and Super M-Branes , 2018, Communications in Mathematical Physics.

[33]  David Ridout,et al.  Relaxed Highest-Weight Modules I: Rank 1 Cases , 2018, Communications in Mathematical Physics.

[34]  H. Sati,et al.  Higher-twisted periodic smooth Deligne cohomology , 2017, Homology, Homotopy and Applications.

[35]  S. Yau,et al.  D-type fiber-base duality , 2018, Journal of High Energy Physics.

[36]  A. Crivellin,et al.  B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background. , 2018, Physical review letters.

[37]  S. Hartnoll,et al.  Holographic Quantum Matter , 2016, 1612.07324.

[38]  H. Sati Framed M-branes, corners, and topological invariants , 2013, Journal of Mathematical Physics.

[39]  J. Jia,et al.  Detection of Majorana zero mode in the vortex , 2017 .

[40]  H. Sati,et al.  Twisted smooth Deligne cohomology , 2017, 1706.02742.

[41]  Sumathi Rao,et al.  Introduction to abelian and non-abelian anyons , 2016, 1610.09260.

[42]  D. Fiorenza,et al.  Rational sphere valued supercocycles in M-theory and type IIA string theory , 2016, 1606.03206.

[43]  Guo Chuan Thiang,et al.  Differential Topology of Semimetals , 2016, Communications in Mathematical Physics.

[44]  D. Fiorenza,et al.  T-Duality from super Lie n-algebra cocycles for super p-branes , 2016, 1611.06536.

[45]  L. Fu,et al.  Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.

[46]  Yuji Tachikawa A brief review of the 2d/4d correspondences , 2016, 1608.02964.

[47]  Liang Jiang,et al.  Measurement-only topological quantum computation without forced measurements , 2016, 1607.07475.

[48]  Stephen Pietromonaco The Derived Category of Coherent Sheaves and B-model Topological String Theory , 2016, 1712.09205.

[49]  S. Brodsky,et al.  Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography , 2016, 1606.04638.

[50]  Kazuya Yonekura,et al.  6d N = (1,0) theories on S1 /T2 and class S theories: part II , 2015 .

[51]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[52]  Guo Chuan Thiang,et al.  T-duality of topological insulators , 2015, 1503.01206.

[53]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[54]  Guo Chuan Thiang Topological phases: isomorphism, homotopy and $K$-theory , 2014, 1412.4191.

[55]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[56]  Marko Berghoff Wonderful Compactifications in Quantum Field Theory , 2014, 1411.5583.

[57]  T. Kohno Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks , 2014 .

[58]  R. Savelli,et al.  T-branes as branes within branes , 2014, 1410.4178.

[59]  Guo Chuan Thiang On the K-Theoretic Classification of Topological Phases of Matter , 2014, 1406.7366.

[60]  Yuji Tachikawa Moduli spaces of SO(8) instantons on smooth ALE spaces as Higgs branches of 4d $ \mathcal{N} $ = 2 supersymmetric theories , 2014, 1402.4200.

[61]  U. Bunke,et al.  Differential cohomology theories as sheaves of spectra , 2013, 1311.3188.

[62]  D. Huse,et al.  Anyonic quantum spin chains: Spin-1 generalizations and topological stability , 2013, 1303.4290.

[63]  E. Palti,et al.  MODELS OF PARTICLE PHYSICS FROM TYPE IIB STRING THEORY AND F-THEORY: A REVIEW , 2012, 1212.0555.

[64]  Parsa Bonderson Measurement-only topological quantum computation via tunable interactions , 2012, 1210.7929.

[65]  J. Boer,et al.  Exotic Branes in String Theory , 2012, 1209.6056.

[66]  E. Klempt,et al.  Multiplet classification of light-quark baryons , 2012 .

[67]  D. Freed,et al.  Twisted Equivariant Matter , 2012, 1208.5055.

[68]  David Ridout,et al.  MODULAR DATA AND VERLINDE FORMULAE FOR FRACTIONAL LEVEL WZW MODELS I , 2012, 1205.6513.

[69]  J. Distler,et al.  Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories , 2012, 1203.2930.

[70]  M. Taki,et al.  M5-branes, toric diagrams and gauge theory duality , 2011, 1112.5228.

[71]  B. Estienne,et al.  Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model , 2011, 1110.1101.

[72]  T. Schick,et al.  Differential K-Theory: A Survey , 2010, 1011.6663.

[73]  T. Kohno HOMOLOGICAL REPRESENTATIONS OF BRAID GROUPS AND KZ CONNECTIONS , 2012 .

[74]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[75]  T. Ortín,et al.  Defect Branes , 2011, 1109.4484.

[76]  T. Nishioka,et al.  Central charges of para-Liouville and Toda theories from M5-branes , 2011 .

[77]  Youngman Kim,et al.  Holography at Work for Nuclear and Hadron Physics , 2011, 1107.0155.

[78]  M. Mariño Lectures on localization and matrix models in supersymmetric Chern–Simons-matter theories , 2011, 1104.0783.

[79]  L. Alday,et al.  Affine SL(2) Conformal Blocks from 4d Gauge Theories , 2010, Letters in Mathematical Physics.

[80]  P. R. Kotiuga,et al.  A Celebration of the Mathematical Legacy of Raoul Bott , 2010 .

[81]  C. Burgess,et al.  Codimension-2 brane–bulk matching: examples from six and ten dimensions , 2009, 0912.3039.

[82]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[83]  A. Valentino,et al.  Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory , 2007, 0710.2773.

[84]  Mark Gross,et al.  Dirichlet Branes and Mirror Symmetry , 2009 .

[85]  J. Erlich How Well Does AdS/QCD Describe QCD? , 2009, 0908.0312.

[86]  G. Brown,et al.  The Multifaceted Skyrmion , 2009, 0907.1963.

[87]  J. Maldacena,et al.  The gravity duals of N=2 superconformal field theories , 2009, 0904.4466.

[88]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[89]  D. Sullivan,et al.  Structured Vector Bundles Define Differential K-Theory , 2008, 0810.4935.

[90]  Parsa Bonderson,et al.  Measurement-Only Topological Quantum Computation via Anyonic Interferometry , 2008, 0808.1933.

[91]  J. Maldacena,et al.  N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.

[92]  Matthias Troyer,et al.  A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.

[93]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[94]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[95]  C. Vafa,et al.  Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions , 2007, 0709.4446.

[96]  Melanie Becker,et al.  String theory and M-theory: A modern introduction , 2006 .

[97]  Yong Zhang Teleportation, braid group and Temperley-Lieb algebra , 2006, quant-ph/0610148.

[98]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[99]  P. Xu,et al.  Chern character for twisted K-theory of orbifolds , 2005, math/0505267.

[100]  J. Greenlees Equivariant version of real and complex connective $K$-theory , 2005 .

[101]  M. Atiyah,et al.  Twisted K-theory , 2004, math/0407054.

[102]  Chong-oh Lee,et al.  BRANE WORLD OF WARP GEOMETRY: AN INTRODUCTORY REVIEW , 2003, hep-th/0307023.

[103]  Leila Schneps,et al.  Hodge Theory and Complex Algebraic Geometry II: Index , 2003 .

[104]  A. Adem,et al.  Twisted Orbifold K-Theory , 2001, math/0107168.

[105]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[106]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[107]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[108]  I. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[109]  Douglas J. Smith Intersecting brane solutions in string and M-theory , 2002, hep-th/0210157.

[110]  Michael J. Hopkins,et al.  Twisted equivariant K‐theory with complex coefficients , 2002, math/0206257.

[111]  M. Frau,et al.  N = 2 gauge theories on systems of fractional D3/D7-branes , 2001, hep-th/0107057.

[112]  M. Murray,et al.  Twisted K-Theory and K-Theory of Bundle Gerbes , 2001, hep-th/0106194.

[113]  J. Polchinski,et al.  Hierarchies from fluxes in string compactifications , 2001, hep-th/0105097.

[114]  C. Schweigert,et al.  /D-branes on ALE spaces and the ADE classification of conformal field theories , 2000, hep-th/0006247.

[115]  河野 俊丈 Conformal field theory and topology , 2002 .

[116]  E. Scheidegger D-Branes on Calabi-Yau Spaces , 2001 .

[117]  P. Aspinwall,et al.  D-brane stability and monodromy , 2001, hep-th/0110071.

[118]  James F. Davis,et al.  Homology with local coefficients , 2001 .

[119]  E. Lupercio,et al.  Gerbes over Orbifolds and Twisted K-Theory , 2001, math/0105039.

[120]  I. Todorov,et al.  Monodromy representations of the braid group , 2000, hep-th/0012099.

[121]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[122]  E. Frenkel,et al.  Vertex Algebras and Algebraic Curves , 2000, math/0007054.

[123]  W. Lerche On a Boundary CFT Description of Nonperturbative N=2 Yang-Mills Theory , 2000, hep-th/0006100.

[124]  Y. Ruan Discrete Torsion and Twisted Orbifold Cohomology , 2000, math/0005299.

[125]  Masako Asano Compactification and Identification of Branes in the Kaluza-Klein monopole backgrounds , 2000, hep-th/0003241.

[126]  M. Douglas,et al.  Stability and BPS branes , 2000, hep-th/0002037.

[127]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[128]  Sergey Yuzvinsky,et al.  Cohomology of Local systems , 2000 .

[129]  D. Lichtenberg Whither Hadron Supersymmetry , 1999, hep-ph/9912280.

[130]  R. J. Szabo,et al.  Constructing D-branes from K theory , 1999, hep-th/9907140.

[131]  Sergey A. Cherkis,et al.  Supergravity Solution for M5-brane Intersection , 1999, hep-th/9906203.

[132]  Petr Hořava,et al.  Brane transfer operations and T-duality of non-BPS states , 1999, hep-th/9902160.

[133]  E. Sharpe D-branes, derived categories, and Grothendieck groups , 1999, hep-th/9902116.

[134]  M. Roček,et al.  Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.

[135]  P. West,et al.  Monopole dynamics from the M-fivebrane , 1998, hep-th/9811025.

[136]  T. Ortín,et al.  An Sl(2, Z) multiplet of nine-dimensional type II supergravity theories , 1998, hep-th/9806120.

[137]  Petr Hořava Type IIA D-branes, K theory, and matrix theory , 1998, hep-th/9812135.

[138]  Edward Witten D-Branes And K-Theory , 1998, hep-th/9810188.

[139]  I. Biswas Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree , 1998 .

[140]  D. Lust,et al.  The Neveu-Schwarz five-brane and its dual geometries , 1998, hep-th/9807008.

[141]  P. Etingof,et al.  Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations , 1998 .

[142]  S. Kachru,et al.  Matrix Description of Intersecting M5 Branes , 1998, hep-th/9803050.

[143]  D. Mateos,et al.  Brane-intersection dynamics from branes in brane backgrounds , 1998, hep-th/9803040.

[144]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[145]  P. Howe,et al.  Classical M-fivebrane dynamics and quantum N=2 Yang-Mills , 1997, hep-th/9710034.

[146]  P. West,et al.  Gauge fields and M-fivebrane dynamics , 1997, hep-th/9712040.

[147]  P. Howe,et al.  The threebrane soliton of the M-fivebrane , 1997, hep-th/9710033.

[148]  R. Bott,et al.  Integral Invariants of 3-Manifolds , 1997, dg-ga/9710001.

[149]  J. Harvey,et al.  Unwinding strings and t duality of Kaluza-Klein and h monopoles , 1997, hep-th/9708086.

[150]  Clifford V. Johnson FROM M-THEORY TO F-THEORY, WITH BRANES , 1997, hep-th/9706155.

[151]  K. Intriligator,et al.  Consistency Conditions for Branes at Orbifold Singularities , 1997, hep-th/9705030.

[152]  E. Witten SOLUTIONS OF FOUR-DIMENSIONAL FIELD THEORIES VIA M-THEORY , 1997, hep-th/9703166.

[153]  W. Lerche Introduction to Seiberg-Witten Theory and its Stringy Origin , 1996, hep-th/9611190.

[154]  S. Katz,et al.  Geometric engineering of quantum field theories , 1996, hep-th/9609239.

[155]  D. Altschuler,et al.  Vassiliev Knot Invariants and Chern-Simons Perturbation Theory to All Orders , 1996, q-alg/9603010.

[156]  Clifford V. Johnson,et al.  Aspects of Type IIB Theory on ALE Spaces , 1996, hep-th/9610140.

[157]  J. L. Petersen,et al.  Fusion, crossing and monodromy in conformal field theory based on SL(2) current algebra with fractional level , 1996, hep-th/9607129.

[158]  T. Banks,et al.  Probing F-theory with branes , 1996, hep-th/9605199.

[159]  A. Sen F-theory and orientifolds , 1996, hep-th/9605150.

[160]  A. Tseytlin Harmonic superpositions of M-branes , 1996, hep-th/9604035.

[161]  J. Howie,et al.  Intersecting M-branes , 1996, hep-th/9603087.

[162]  C. Vafa Evidence for F theory , 1996, hep-th/9602022.

[163]  G. Papadopoulos,et al.  Duality of type-II 7-branes and 8-branes , 1996, hep-th/9601150.

[164]  D. Kutasov Orbifolds and solitons , 1995, hep-th/9512145.

[165]  H. Ooguri,et al.  Two-dimensional black hole and singularities of CY manifolds , 1995, hep-th/9511164.

[166]  V. Dotsenko,et al.  Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models , 1996 .

[167]  J. Froehlich,et al.  Supersymmetric quantum theory, non-commutative geometry and gravitation , 1997, hep-th/9706132.

[168]  F. Malikov,et al.  Institute for Mathematical Physics Modular Functor and Representation Theory of Sl 2 at a Rational Level Modular Functor and Representation Theory of Sl 2 at a Rational Level , 2022 .

[169]  A. Varchenko Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups , 1995 .

[170]  H. Terao,et al.  Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors , 1994 .

[171]  I. Singer,et al.  Chern-Simons perturbation theory. II , 1993, hep-th/9304087.

[172]  A. Varchenko,et al.  On algebraic equations satisfied by hypergeometric correlators in WZW models. I , 1994 .

[173]  V. Petkova,et al.  Solutions of the Knizhnik-Zamolodchikov equation with rational isospins and the reduction to the minimal models , 1992, hep-th/9201080.

[174]  F. Wilczek,et al.  Exact solutions and the adiabatic heuristic for quantum Hall states , 1992 .

[175]  S. Zucker,et al.  Regulators and characteristic classes of flat bundles , 1992, alg-geom/9202023.

[176]  A. Tsuchiya,et al.  Level-rank duality of WZW models in conformal field theory , 1992 .

[177]  H. Esnault,et al.  Cohomology of local systems on the complement of hyperplanes , 1992 .

[178]  A. Lerda Anyons: Quantum Mechanics of Particles with Fractional Statistics , 1992 .

[179]  Vadim Schechtman,et al.  Arrangements of hyperplanes and Lie algebra homology , 1991 .

[180]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[181]  M. Shifman Four-dimension aspect of the perturbative renormalization in three-dimensional Chern-Simons theory , 1991 .

[182]  A. Varchenko,et al.  On algebraic equations satisfied by correlators in Wess-Zumino-Witten models , 1990 .

[183]  A. Varchenko,et al.  Hypergeometric solutions of Knizhnik-Zamolodchikov equations , 1990 .

[184]  S. Yau,et al.  Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds , 1990 .

[185]  Einarsson,et al.  Fractional statistics on a torus. , 1990, Physical review letters.

[186]  L. Alvarez-Gaumé,et al.  A note on perturbative Chern-Simons theory , 1990 .

[187]  M. Karoubi Théorie générale des classes caractéristiques secondaires , 1990 .

[188]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[189]  V. Kac Classification of modular invariant representations of affine algebras , 1989 .

[190]  V. Kac,et al.  Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .

[191]  V. Kac,et al.  Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[192]  C. Itzykson,et al.  The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .

[193]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[194]  P. Christe,et al.  The four-point correlations of all primary operators of the d = 2 conformally invariant SU(2) σ-model with Wess-Zumino term , 1987 .

[195]  T. Kohno Monodromy representations of braid groups and Yang-Baxter equations , 1987 .

[196]  E. Witten,et al.  The antisymmetric tensor field in superstring theory , 1986 .

[197]  R. Carter INFINITE DIMENSIONAL LIE ALGEBRAS (Progress in Mathematics, 44) , 1985 .

[198]  V. G. Knizhnik,et al.  Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .

[199]  V. Kac,et al.  Infinite-dimensional Lie algebras, theta functions and modular forms , 1984 .

[200]  V. Kac,et al.  Spin and wedge representations of infinite-dimensional Lie algebras and groups. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[201]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[202]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[203]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[204]  Hans Grauert,et al.  Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten , 1960 .

[205]  K. Stein Überlagerungen holomorph-vollständiger komplexer Räume , 1956 .

[206]  H. Behnke,et al.  Entwicklung analytischer Funktionen auf Riemannschen Flächen , 1947 .

[207]  D. Fiorenza,et al.  The WZW term of the M 5-brane and differential cohomotopy , 2022 .