Anyonic Defect Branes and Conformal Blocks in Twisted Equivariant Differential (TED) K-theory
暂无分享,去创建一个
[1] G. Isidori,et al. Flavor hierarchies, flavor anomalies, and Higgs mass from a warped extra dimension , 2022, Physics Letters B.
[2] T. R. Scruby,et al. Universal fault-tolerant quantum computing with stabilizer codes , 2020, Physical Review Research.
[3] D. Fiorenza,et al. Twistorial cohomotopy implies Green–Schwarz anomaly cancellation , 2020, Reviews in Mathematical Physics.
[4] J. Khoury. Dark Matter Superfluidity , 2016, SciPost Physics Lecture Notes.
[5] S. Brodsky. Supersymmetric and Other Novel Features of Hadron Physics from Light-Front Holography , 2021, 2112.02453.
[6] J. Jain,et al. Composite anyons on a torus , 2021, Physical Review B.
[7] D. Lancierini,et al. On the significance of new physics in b → sℓ+ℓ− decays , 2021, Physics Letters B.
[8] M. Neubert,et al. Reading the footprints of the B-meson flavor anomalies , 2021, Journal of High Energy Physics.
[9] Samuel S. Cree,et al. Fault-Tolerant Logical Gates in Holographic Stabilizer Codes Are Severely Restricted , 2021, PRX Quantum.
[10] J. Eisert,et al. Holographic tensor network models and quantum error correction: a topical review , 2021, Quantum Science and Technology.
[11] G. Isidori,et al. Flavor non-universal Pati-Salam unification and neutrino masses , 2020, Physics Letters B.
[12] H. Sati,et al. Twisted cohomotopy implies M5-brane anomaly cancellation , 2020, Letters in Mathematical Physics.
[13] H. Sati,et al. Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers , 2020, Journal of Geometry and Physics.
[14] D. Fiorenza,et al. The character map in (twisted differential) non-abelian cohomology , 2020, 2009.11909.
[15] T. Welsh,et al. slˆ(n)N WZW conformal blocks from SU(N) instanton partition functions on C2/Zn , 2020 .
[16] M. Manfra,et al. Direct observation of anyonic braiding statistics , 2020, Nature Physics.
[17] D. Fiorenza,et al. Twisted cohomotopy implies twisted string structure on M5-branes , 2020, 2002.11093.
[18] H. Sati,et al. Equivariant Cohomotopy implies orientifold tadpole cancellation , 2019, 1909.12277.
[19] D. Fiorenza,et al. Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5 , 2019, Journal of High Energy Physics.
[20] J. Rasmussen. Staggered and affine Kac modules over A1(1) , 2018, Nuclear Physics B.
[21] Masahide Manabe. n -th parafermion W N characters from U( N ) instanton counting on C 2 = Z n , 2020 .
[22] H. Sati,et al. Differential Cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams , 2019, Advances in Theoretical and Mathematical Physics.
[23] A. Varchenko,et al. Twisted de Rham Complex on Line and Singular Vectors in sl2 Verma Modules , 2019, Symmetry, Integrability and Geometry: Methods and Applications.
[24] H. Sati. Six-dimensional gauge theories and (twisted) generalized cohomology , 2019, 1908.08517.
[25] C. Beenakker. Search for non-Abelian Majorana braiding statistics in superconductors , 2019, SciPost Physics Lecture Notes.
[26] David Ridout,et al. Relaxed highest-weight modules II: Classifications for affine vertex algebras , 2019, 1906.02935.
[27] D. Fiorenza,et al. Twisted Cohomotopy Implies M-Theory Anomaly Cancellation on 8-Manifolds , 2019, 1904.10207.
[28] H. Sati,et al. Ramond–Ramond fields and twisted differential K-theory , 2019, Advances in Theoretical and Mathematical Physics.
[29] S. Schwieger. Aspects of T-branes , 2019 .
[30] Babak Haghighat,et al. M5 branes and theta functions , 2018, Journal of High Energy Physics.
[31] Guo Chuan Thiang,et al. Crystallographic T-duality , 2018, Journal of Geometry and Physics.
[32] H. Sati,et al. Real ADE-Equivariant (co)Homotopy and Super M-Branes , 2018, Communications in Mathematical Physics.
[33] David Ridout,et al. Relaxed Highest-Weight Modules I: Rank 1 Cases , 2018, Communications in Mathematical Physics.
[34] H. Sati,et al. Higher-twisted periodic smooth Deligne cohomology , 2017, Homology, Homotopy and Applications.
[35] S. Yau,et al. D-type fiber-base duality , 2018, Journal of High Energy Physics.
[36] A. Crivellin,et al. B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background. , 2018, Physical review letters.
[37] S. Hartnoll,et al. Holographic Quantum Matter , 2016, 1612.07324.
[38] H. Sati. Framed M-branes, corners, and topological invariants , 2013, Journal of Mathematical Physics.
[39] J. Jia,et al. Detection of Majorana zero mode in the vortex , 2017 .
[40] H. Sati,et al. Twisted smooth Deligne cohomology , 2017, 1706.02742.
[41] Sumathi Rao,et al. Introduction to abelian and non-abelian anyons , 2016, 1610.09260.
[42] D. Fiorenza,et al. Rational sphere valued supercocycles in M-theory and type IIA string theory , 2016, 1606.03206.
[43] Guo Chuan Thiang,et al. Differential Topology of Semimetals , 2016, Communications in Mathematical Physics.
[44] D. Fiorenza,et al. T-Duality from super Lie n-algebra cocycles for super p-branes , 2016, 1611.06536.
[45] L. Fu,et al. Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.
[46] Yuji Tachikawa. A brief review of the 2d/4d correspondences , 2016, 1608.02964.
[47] Liang Jiang,et al. Measurement-only topological quantum computation without forced measurements , 2016, 1607.07475.
[48] Stephen Pietromonaco. The Derived Category of Coherent Sheaves and B-model Topological String Theory , 2016, 1712.09205.
[49] S. Brodsky,et al. Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography , 2016, 1606.04638.
[50] Kazuya Yonekura,et al. 6d N = (1,0) theories on S1 /T2 and class S theories: part II , 2015 .
[51] J. Preskill,et al. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.
[52] Guo Chuan Thiang,et al. T-duality of topological insulators , 2015, 1503.01206.
[53] M. Freedman,et al. Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.
[54] Guo Chuan Thiang. Topological phases: isomorphism, homotopy and $K$-theory , 2014, 1412.4191.
[55] Xi Dong,et al. Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.
[56] Marko Berghoff. Wonderful Compactifications in Quantum Field Theory , 2014, 1411.5583.
[57] T. Kohno. Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks , 2014 .
[58] R. Savelli,et al. T-branes as branes within branes , 2014, 1410.4178.
[59] Guo Chuan Thiang. On the K-Theoretic Classification of Topological Phases of Matter , 2014, 1406.7366.
[60] Yuji Tachikawa. Moduli spaces of SO(8) instantons on smooth ALE spaces as Higgs branches of 4d $ \mathcal{N} $ = 2 supersymmetric theories , 2014, 1402.4200.
[61] U. Bunke,et al. Differential cohomology theories as sheaves of spectra , 2013, 1311.3188.
[62] D. Huse,et al. Anyonic quantum spin chains: Spin-1 generalizations and topological stability , 2013, 1303.4290.
[63] E. Palti,et al. MODELS OF PARTICLE PHYSICS FROM TYPE IIB STRING THEORY AND F-THEORY: A REVIEW , 2012, 1212.0555.
[64] Parsa Bonderson. Measurement-only topological quantum computation via tunable interactions , 2012, 1210.7929.
[65] J. Boer,et al. Exotic Branes in String Theory , 2012, 1209.6056.
[66] E. Klempt,et al. Multiplet classification of light-quark baryons , 2012 .
[67] D. Freed,et al. Twisted Equivariant Matter , 2012, 1208.5055.
[68] David Ridout,et al. MODULAR DATA AND VERLINDE FORMULAE FOR FRACTIONAL LEVEL WZW MODELS I , 2012, 1205.6513.
[69] J. Distler,et al. Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories , 2012, 1203.2930.
[70] M. Taki,et al. M5-branes, toric diagrams and gauge theory duality , 2011, 1112.5228.
[71] B. Estienne,et al. Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model , 2011, 1110.1101.
[72] T. Schick,et al. Differential K-Theory: A Survey , 2010, 1011.6663.
[73] T. Kohno. HOMOLOGICAL REPRESENTATIONS OF BRAID GROUPS AND KZ CONNECTIONS , 2012 .
[74] C. Beenakker,et al. Search for Majorana Fermions in Superconductors , 2011, 1112.1950.
[75] T. Ortín,et al. Defect Branes , 2011, 1109.4484.
[76] T. Nishioka,et al. Central charges of para-Liouville and Toda theories from M5-branes , 2011 .
[77] Youngman Kim,et al. Holography at Work for Nuclear and Hadron Physics , 2011, 1107.0155.
[78] M. Mariño. Lectures on localization and matrix models in supersymmetric Chern–Simons-matter theories , 2011, 1104.0783.
[79] L. Alday,et al. Affine SL(2) Conformal Blocks from 4d Gauge Theories , 2010, Letters in Mathematical Physics.
[80] P. R. Kotiuga,et al. A Celebration of the Mathematical Legacy of Raoul Bott , 2010 .
[81] C. Burgess,et al. Codimension-2 brane–bulk matching: examples from six and ten dimensions , 2009, 0912.3039.
[82] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[83] A. Valentino,et al. Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory , 2007, 0710.2773.
[84] Mark Gross,et al. Dirichlet Branes and Mirror Symmetry , 2009 .
[85] J. Erlich. How Well Does AdS/QCD Describe QCD? , 2009, 0908.0312.
[86] G. Brown,et al. The Multifaceted Skyrmion , 2009, 0907.1963.
[87] J. Maldacena,et al. The gravity duals of N=2 superconformal field theories , 2009, 0904.4466.
[88] Alexei Kitaev,et al. Periodic table for topological insulators and superconductors , 2009, 0901.2686.
[89] D. Sullivan,et al. Structured Vector Bundles Define Differential K-Theory , 2008, 0810.4935.
[90] Parsa Bonderson,et al. Measurement-Only Topological Quantum Computation via Anyonic Interferometry , 2008, 0808.1933.
[91] J. Maldacena,et al. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.
[92] Matthias Troyer,et al. A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.
[93] M. Freedman,et al. Measurement-only topological quantum computation. , 2008, Physical review letters.
[94] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[95] C. Vafa,et al. Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions , 2007, 0709.4446.
[96] Melanie Becker,et al. String theory and M-theory: A modern introduction , 2006 .
[97] Yong Zhang. Teleportation, braid group and Temperley-Lieb algebra , 2006, quant-ph/0610148.
[98] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[99] P. Xu,et al. Chern character for twisted K-theory of orbifolds , 2005, math/0505267.
[100] J. Greenlees. Equivariant version of real and complex connective $K$-theory , 2005 .
[101] M. Atiyah,et al. Twisted K-theory , 2004, math/0407054.
[102] Chong-oh Lee,et al. BRANE WORLD OF WARP GEOMETRY: AN INTRODUCTORY REVIEW , 2003, hep-th/0307023.
[103] Leila Schneps,et al. Hodge Theory and Complex Algebraic Geometry II: Index , 2003 .
[104] A. Adem,et al. Twisted Orbifold K-Theory , 2001, math/0107168.
[105] A. Kitaev,et al. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[106] B. Hall. Lie Groups, Lie Algebras, and Representations , 2003 .
[107] T. Bridgeland. Stability conditions on triangulated categories , 2002, math/0212237.
[108] I. Singer,et al. Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.
[109] Douglas J. Smith. Intersecting brane solutions in string and M-theory , 2002, hep-th/0210157.
[110] Michael J. Hopkins,et al. Twisted equivariant K‐theory with complex coefficients , 2002, math/0206257.
[111] M. Frau,et al. N = 2 gauge theories on systems of fractional D3/D7-branes , 2001, hep-th/0107057.
[112] M. Murray,et al. Twisted K-Theory and K-Theory of Bundle Gerbes , 2001, hep-th/0106194.
[113] J. Polchinski,et al. Hierarchies from fluxes in string compactifications , 2001, hep-th/0105097.
[114] C. Schweigert,et al. /D-branes on ALE spaces and the ADE classification of conformal field theories , 2000, hep-th/0006247.
[115] 河野 俊丈. Conformal field theory and topology , 2002 .
[116] E. Scheidegger. D-Branes on Calabi-Yau Spaces , 2001 .
[117] P. Aspinwall,et al. D-brane stability and monodromy , 2001, hep-th/0110071.
[118] James F. Davis,et al. Homology with local coefficients , 2001 .
[119] E. Lupercio,et al. Gerbes over Orbifolds and Twisted K-Theory , 2001, math/0105039.
[120] I. Todorov,et al. Monodromy representations of the braid group , 2000, hep-th/0012099.
[121] D. Ivanov. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.
[122] E. Frenkel,et al. Vertex Algebras and Algebraic Curves , 2000, math/0007054.
[123] W. Lerche. On a Boundary CFT Description of Nonperturbative N=2 Yang-Mills Theory , 2000, hep-th/0006100.
[124] Y. Ruan. Discrete Torsion and Twisted Orbifold Cohomology , 2000, math/0005299.
[125] Masako Asano. Compactification and Identification of Branes in the Kaluza-Klein monopole backgrounds , 2000, hep-th/0003241.
[126] M. Douglas,et al. Stability and BPS branes , 2000, hep-th/0002037.
[127] J. Maldacena,et al. Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.
[128] Sergey Yuzvinsky,et al. Cohomology of Local systems , 2000 .
[129] D. Lichtenberg. Whither Hadron Supersymmetry , 1999, hep-ph/9912280.
[130] R. J. Szabo,et al. Constructing D-branes from K theory , 1999, hep-th/9907140.
[131] Sergey A. Cherkis,et al. Supergravity Solution for M5-brane Intersection , 1999, hep-th/9906203.
[132] Petr Hořava,et al. Brane transfer operations and T-duality of non-BPS states , 1999, hep-th/9902160.
[133] E. Sharpe. D-branes, derived categories, and Grothendieck groups , 1999, hep-th/9902116.
[134] M. Roček,et al. Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.
[135] P. West,et al. Monopole dynamics from the M-fivebrane , 1998, hep-th/9811025.
[136] T. Ortín,et al. An Sl(2, Z) multiplet of nine-dimensional type II supergravity theories , 1998, hep-th/9806120.
[137] Petr Hořava. Type IIA D-branes, K theory, and matrix theory , 1998, hep-th/9812135.
[138] Edward Witten. D-Branes And K-Theory , 1998, hep-th/9810188.
[139] I. Biswas. Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree , 1998 .
[140] D. Lust,et al. The Neveu-Schwarz five-brane and its dual geometries , 1998, hep-th/9807008.
[141] P. Etingof,et al. Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations , 1998 .
[142] S. Kachru,et al. Matrix Description of Intersecting M5 Branes , 1998, hep-th/9803050.
[143] D. Mateos,et al. Brane-intersection dynamics from branes in brane backgrounds , 1998, hep-th/9803040.
[144] John Preskill,et al. Topological Quantum Computation , 1998, QCQC.
[145] P. Howe,et al. Classical M-fivebrane dynamics and quantum N=2 Yang-Mills , 1997, hep-th/9710034.
[146] P. West,et al. Gauge fields and M-fivebrane dynamics , 1997, hep-th/9712040.
[147] P. Howe,et al. The threebrane soliton of the M-fivebrane , 1997, hep-th/9710033.
[148] R. Bott,et al. Integral Invariants of 3-Manifolds , 1997, dg-ga/9710001.
[149] J. Harvey,et al. Unwinding strings and t duality of Kaluza-Klein and h monopoles , 1997, hep-th/9708086.
[150] Clifford V. Johnson. FROM M-THEORY TO F-THEORY, WITH BRANES , 1997, hep-th/9706155.
[151] K. Intriligator,et al. Consistency Conditions for Branes at Orbifold Singularities , 1997, hep-th/9705030.
[152] E. Witten. SOLUTIONS OF FOUR-DIMENSIONAL FIELD THEORIES VIA M-THEORY , 1997, hep-th/9703166.
[153] W. Lerche. Introduction to Seiberg-Witten Theory and its Stringy Origin , 1996, hep-th/9611190.
[154] S. Katz,et al. Geometric engineering of quantum field theories , 1996, hep-th/9609239.
[155] D. Altschuler,et al. Vassiliev Knot Invariants and Chern-Simons Perturbation Theory to All Orders , 1996, q-alg/9603010.
[156] Clifford V. Johnson,et al. Aspects of Type IIB Theory on ALE Spaces , 1996, hep-th/9610140.
[157] J. L. Petersen,et al. Fusion, crossing and monodromy in conformal field theory based on SL(2) current algebra with fractional level , 1996, hep-th/9607129.
[158] T. Banks,et al. Probing F-theory with branes , 1996, hep-th/9605199.
[159] A. Sen. F-theory and orientifolds , 1996, hep-th/9605150.
[160] A. Tseytlin. Harmonic superpositions of M-branes , 1996, hep-th/9604035.
[161] J. Howie,et al. Intersecting M-branes , 1996, hep-th/9603087.
[162] C. Vafa. Evidence for F theory , 1996, hep-th/9602022.
[163] G. Papadopoulos,et al. Duality of type-II 7-branes and 8-branes , 1996, hep-th/9601150.
[164] D. Kutasov. Orbifolds and solitons , 1995, hep-th/9512145.
[165] H. Ooguri,et al. Two-dimensional black hole and singularities of CY manifolds , 1995, hep-th/9511164.
[166] V. Dotsenko,et al. Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models , 1996 .
[167] J. Froehlich,et al. Supersymmetric quantum theory, non-commutative geometry and gravitation , 1997, hep-th/9706132.
[168] F. Malikov,et al. Institute for Mathematical Physics Modular Functor and Representation Theory of Sl 2 at a Rational Level Modular Functor and Representation Theory of Sl 2 at a Rational Level , 2022 .
[169] A. Varchenko. Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups , 1995 .
[170] H. Terao,et al. Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors , 1994 .
[171] I. Singer,et al. Chern-Simons perturbation theory. II , 1993, hep-th/9304087.
[172] A. Varchenko,et al. On algebraic equations satisfied by hypergeometric correlators in WZW models. I , 1994 .
[173] V. Petkova,et al. Solutions of the Knizhnik-Zamolodchikov equation with rational isospins and the reduction to the minimal models , 1992, hep-th/9201080.
[174] F. Wilczek,et al. Exact solutions and the adiabatic heuristic for quantum Hall states , 1992 .
[175] S. Zucker,et al. Regulators and characteristic classes of flat bundles , 1992, alg-geom/9202023.
[176] A. Tsuchiya,et al. Level-rank duality of WZW models in conformal field theory , 1992 .
[177] H. Esnault,et al. Cohomology of local systems on the complement of hyperplanes , 1992 .
[178] A. Lerda. Anyons: Quantum Mechanics of Particles with Fractional Statistics , 1992 .
[179] Vadim Schechtman,et al. Arrangements of hyperplanes and Lie algebra homology , 1991 .
[180] Gregory W. Moore,et al. Nonabelions in the fractional quantum Hall effect , 1991 .
[181] M. Shifman. Four-dimension aspect of the perturbative renormalization in three-dimensional Chern-Simons theory , 1991 .
[182] A. Varchenko,et al. On algebraic equations satisfied by correlators in Wess-Zumino-Witten models , 1990 .
[183] A. Varchenko,et al. Hypergeometric solutions of Knizhnik-Zamolodchikov equations , 1990 .
[184] S. Yau,et al. Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds , 1990 .
[185] Einarsson,et al. Fractional statistics on a torus. , 1990, Physical review letters.
[186] L. Alvarez-Gaumé,et al. A note on perturbative Chern-Simons theory , 1990 .
[187] M. Karoubi. Théorie générale des classes caractéristiques secondaires , 1990 .
[188] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[189] V. Kac. Classification of modular invariant representations of affine algebras , 1989 .
[190] V. Kac,et al. Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .
[191] V. Kac,et al. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[192] C. Itzykson,et al. The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .
[193] Andrea Cappelli,et al. Modular Invariant Partition Functions in Two-Dimensions , 1987 .
[194] P. Christe,et al. The four-point correlations of all primary operators of the d = 2 conformally invariant SU(2) σ-model with Wess-Zumino term , 1987 .
[195] T. Kohno. Monodromy representations of braid groups and Yang-Baxter equations , 1987 .
[196] E. Witten,et al. The antisymmetric tensor field in superstring theory , 1986 .
[197] R. Carter. INFINITE DIMENSIONAL LIE ALGEBRAS (Progress in Mathematics, 44) , 1985 .
[198] V. G. Knizhnik,et al. Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .
[199] V. Kac,et al. Infinite-dimensional Lie algebras, theta functions and modular forms , 1984 .
[200] V. Kac,et al. Spin and wedge representations of infinite-dimensional Lie algebras and groups. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[201] P. Orlik,et al. Combinatorics and topology of complements of hyperplanes , 1980 .
[202] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .
[203] P. Deligne,et al. Equations differentielles à points singuliers reguliers , 1970 .
[204] Hans Grauert,et al. Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten , 1960 .
[205] K. Stein. Überlagerungen holomorph-vollständiger komplexer Räume , 1956 .
[206] H. Behnke,et al. Entwicklung analytischer Funktionen auf Riemannschen Flächen , 1947 .
[207] D. Fiorenza,et al. The WZW term of the M 5-brane and differential cohomotopy , 2022 .