Effect of calcination temperature on electrochemical properties of spinel-like NiCo2O4 nano-/microstructures

[1]  Huiyu Chen,et al.  Facile growth of nickel foam-supported MnCo2O4.5 porous nanowires as binder-free electrodes for high-performance hybrid supercapacitors , 2022, Journal of Energy Storage.

[2]  Andriono Manalu Synthesis, Microstructure and Electrical Properties of NiCo2O4/rGO Composites as Pseudocapacitive Electrode for Supercapacitors , 2022, International Journal of Electrochemical Science.

[3]  P. Chand,et al.  Effect of different synthesis methods on morphology and electrochemical behavior of spinel NiCo2O4 nanostructures as electrode material for energy storage application , 2021, Inorganic Chemistry Communications.

[4]  P. Chand,et al.  Facile Synthesis of NiCo2O4 Nanostructure with Enhanced Electrochemical Performance for Supercapacitor Application , 2021, Chemical Physics Letters.

[5]  Sunaina,et al.  Effect of hydrothermal temperature on structural, optical and electrochemical properties of α-MnO2 nanostructures for supercapacitor application , 2021 .

[6]  Huiyu Chen,et al.  High-performance hybrid supercapacitor based on the porous copper cobaltite/cupric oxide nanosheets as a battery-type positive electrode material , 2021, International Journal of Hydrogen Energy.

[7]  Shuhong Yu,et al.  A multi-responsive healable supercapacitor , 2021, Nature Communications.

[8]  A. Ghfar,et al.  Evaluation of pH Effect of Tin Oxide (SnO2) Nanoparticles on Photocatalytic Degradation, Dielectric and Supercapacitor Applications , 2021, Journal of Cluster Science.

[9]  Huiyu Chen,et al.  Porous CuCo2O4 microtubes as a promising battery-type electrode material for high-performance hybrid supercapacitors , 2021 .

[10]  Huiyu Chen,et al.  MgCo2O4-based electrode materials for electrochemical energy storage and conversion: a comprehensive review , 2021, Sustainable Energy & Fuels.

[11]  Huiyu Chen,et al.  A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors , 2021 .

[12]  A. Michaelis,et al.  Recent Insights into Rate Performance Limitations of Li‐ion Batteries , 2020 .

[13]  A. Devi,et al.  Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials , 2020 .

[14]  H. Fan,et al.  Entire synergistic contribution of electrodeposited battery-type NiCo2O4@Ni4.5Co4.5S8 composite for high-performance supercapacitors , 2019, Journal of Power Sources.

[15]  Weiqing Yang,et al.  Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors , 2019, Electrochimica Acta.

[16]  Poonam,et al.  Review of supercapacitors: Materials and devices , 2019, Journal of Energy Storage.

[17]  Jiale Xie,et al.  Puzzles and confusions in supercapacitor and battery: Theory and solutions , 2018, Journal of Power Sources.

[18]  M. Zagho,et al.  Graphene a promising electrode material for supercapacitors—A review , 2018, International Journal of Energy Research.

[19]  Xiuhua Wang,et al.  Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors , 2018, Chemical Engineering Journal.

[20]  Junqing Hu,et al.  Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. , 2018, Journal of colloid and interface science.

[21]  Evgueniy Entchev,et al.  Hybrid battery/supercapacitor energy storage system for the electric vehicles , 2018 .

[22]  D. R. Bambole,et al.  Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review , 2017, Front. Mater..

[23]  Doron Aurbach,et al.  Carbon-based composite materials for supercapacitor electrodes: a review , 2017 .

[24]  Karthik Ramasamy,et al.  Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications , 2015, Scientific Reports.

[25]  Jianjun Jiang,et al.  Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors , 2014 .

[26]  H. Alshareef,et al.  Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance , 2013 .

[27]  Jiaoyang Li,et al.  Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors , 2012 .

[28]  D. Bethune,et al.  Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. , 2012, The journal of physical chemistry letters.