Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets.

Recent experiments have reported the self-assembly of TGA- and DMAET-stabilized CdTe nanoparticles (NPs) into wires and sheets, respectively, depending upon the stabilizer used. We develop a mesoscale model based on quantum mechanical calculations and perform Monte Carlo simulations of these NPs to elucidate the conditions under which these two structures will form. We show that consideration of NP shape, directional attraction, and electrostatic interactions is key to determining the anisotropy of the NP-NP interaction and final self-assembled structures.