The formation of pyrroline and tetrahydropyridine rings in amino acids catalyzed by pyrrolysine synthase (PylD).
暂无分享,去创建一个
A. Bacher | M. Groll | F. Quitterer | P. Beck
[1] J. Krzycki. The path of lysine to pyrrolysine. , 2013, Current opinion in chemical biology.
[2] Michael Groll,et al. Struktur und Reaktionsmechanismus der Pyrrolysinsynthase (PylD) , 2013 .
[3] A. Bacher,et al. Structure and reaction mechanism of pyrrolysine synthase (PylD). , 2013, Angewandte Chemie.
[4] A. Bacher,et al. Biosynthesis of the 22nd genetically encoded amino acid pyrrolysine: structure and reaction mechanism of PylC at 1.5Å resolution. , 2012, Journal of molecular biology.
[5] Peter G Schultz,et al. Site-specific incorporation of ε-N-crotonyllysine into histones. , 2012, Angewandte Chemie.
[6] Thomas Carell,et al. Genetische Kodierung einer Norbornen-Aminosäure zur milden und selektiven Modifikation von Proteinen mit einer kupferfreien Klick-Reaktion† , 2012 .
[7] T. Carell,et al. A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.
[8] W. Eisenreich,et al. Kristallstruktur der Methylornithin‐Synthase (PylB): Einblicke in die Biosynthese von Pyrrolysin , 2012 .
[9] W. Eisenreich,et al. Crystal structure of methylornithine synthase (PylB): insights into the pyrrolysine biosynthesis. , 2012, Angewandte Chemie.
[10] Christian Hertweck. Biosynthese und Einbau von Pyrrolysin, der 22. genetisch codierten Aminosäure , 2011 .
[11] Susan E. Cellitti,et al. D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine. , 2011, Nature chemical biology.
[12] C. Hertweck. Biosynthesis and charging of pyrrolysine, the 22nd genetically encoded amino acid. , 2011, Angewandte Chemie.
[13] J. Krzycki,et al. Functional context, biosynthesis, and genetic encoding of pyrrolysine. , 2011, Current opinion in microbiology.
[14] J. Krzycki,et al. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine , 2011, Nature.
[15] N. Budisa,et al. Doppelte und dreifache In‐vivo‐Funktionalisierung von Proteinen mit synthetischen Aminosäuren , 2010 .
[16] N. Budisa,et al. In vivo double and triple labeling of proteins using synthetic amino acids. , 2010, Angewandte Chemie.
[17] M. Šebela,et al. Ornithine δ-aminotransferase , 2008 .
[18] David G. Longstaff,et al. A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine , 2007, Proceedings of the National Academy of Sciences.
[19] J. Krzycki,et al. The Residue Mass of L-Pyrrolysine in Three Distinct Methylamine Methyltransferases* , 2005, Journal of Biological Chemistry.
[20] David G. Longstaff,et al. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo , 2004, Nature.
[21] C. James,et al. A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase , 2002, Science.
[22] Joseph A. Krzycki,et al. Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA , 2002, Science.
[23] N. Gorlatova,et al. Reconstitution of Dimethylamine:Coenzyme M Methyl Transfer with a Discrete Corrinoid Protein and Two Methyltransferases Purified fromMethanosarcina barkeri * , 2000, The Journal of Biological Chemistry.
[24] J. Krzycki,et al. Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri , 1997, Journal of bacteriology.