Optimisation des structures métalliques élastoplastiques sous conditions de rigidité et de plasticité données

ABSTRACT The design of optimal elastic-plastic steel frames is improved by a new treatment of rigidity and yield conditions for a finite element under uniform load. It allows avoiding an investigation of loading history, herewith not increasing elements number, in case of nonlinear physical model of material. Also, structure's minimal volume is obtained using a new dispersion estimation methodology of the real cross-sections geometrical characteristics. The designing is implemented using MATLAB© environment toolbox « JWM SAOSYS Toolbox v0.42 » created by the authors.

[1]  János Lógó,et al.  Plastic behaviour and stability constraints in the shakedown analysis and optimal design of trusses , 2002 .

[2]  Tao Wang Global Optimization for Constrained Nonlinear Programming , 2000 .

[3]  Grant P. Steven,et al.  Optimum design of frames with multiple constraints using an evolutionary method , 2000 .

[4]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[5]  J. Atkočiūnas,et al.  MATLAB implementation in direct probability design of optimal steel trusses , 2008 .

[6]  Giulio Maier,et al.  Elastic¿plastic and limit-state analyses of frames with softening plastic-hinge models by mathematical programming , 2003 .

[7]  E. Gaylord,et al.  Design of Steel Structures , 1972 .

[8]  Ted Belytschko,et al.  Plane stress shakedown analysis by finite elements , 1972 .

[9]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[10]  Luciano Lamberti,et al.  An efficient simulated annealing algorithm for design optimization of truss structures , 2008 .

[12]  Jasbir S. Arora,et al.  DISCRETE STRUCTURAL OPTIMIZATION WITH COMMERCIALLY AVAILABLE SECTIONS , 1996 .

[13]  A. D. Belegundu Design-independent calculation in FEM-based optimization programs , 1984 .

[14]  Giulio Maier,et al.  Optimum design of plastic structures under displacement constraints , 1981 .

[15]  O. C. Zienkiewicz Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke, Chapter 9, Pages 145–197 of Stress Analysis, Edited by O. C. Zienkiewicz and G. S. Holister, Published by John Wiley & Sons, 1965 , 2001 .

[16]  K. Bathe,et al.  Inelastic Analysis of Solids and Structures , 2004 .

[17]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[18]  Valentinas Skaržauskas,et al.  Optimisation des portiques dans les conditions d'adaptation avec des restrictions en déplacements , 2005 .

[19]  József Farkas,et al.  Analysis and Optimum Design of Metal Structures , 2020 .

[20]  Petr Krysl,et al.  A Pragmatic Introduction to the Finite Element Method for Thermal And Stress Analysis: With the Matlab Toolkit Sofea , 2006 .

[21]  Archibald N. Sherbourne,et al.  Automatic Optimal Design of Tall Steel Building Frameworks , 1995 .

[22]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.