Bounded functional interpretation
暂无分享,去创建一个
[1] A. Grzegorczyk. Some classes of recursive functions , 1964 .
[2] Paulo Oliva,et al. Proof mining in L 1-approximation , 2001 .
[3] U. Kohlenbach. Foundational and Mathematical Uses of Higher Types , 1999 .
[4] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .
[5] Ulrich Kohlenbach,et al. Effective Moduli from Ineffective Uniqueness Proofs. An Unwinding of de La Vallée Poussin's Proof for Chebycheff Approximation , 1993, Ann. Pure Appl. Log..
[6] U. Kohlenbach. A QUANTITATIVE VERSION OF A THEOREM DUE TO BORWEIN-REICH-SHAFRIR , 2001 .
[7] F. Richman,et al. Varieties of Constructive Mathematics: CONSTRUCTIVE ALGEBRA , 1987 .
[8] Ulrich Kohlenbach,et al. Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..
[9] Ulrich Kohlenbach. A note on Spector's quantifier-free rule of extensionality , 2001, Arch. Math. Log..
[10] Paulo Oliva. Polynomial-time algorithms from ineffective proofs , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[11] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[12] Jeremy Avigad,et al. Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .
[13] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik , 1951, Nagoya Mathematical Journal.
[14] Charles D. Parsons,et al. On n-quantifier induction , 1972, Journal of Symbolic Logic.
[15] Ulrich Kohlenbach,et al. Pointwise hereditary majorization and some applications , 1992, Arch. Math. Log..
[16] Ulrich Kohlenbach,et al. The Use of a Logical Principle of Uniform Boundedness in Analysis , 1999 .
[17] Solomon Feferman,et al. Theories of Finite Type Related to Mathematical Practice , 1977 .
[18] Ulrich Kohlenbach,et al. Relative constructivity , 1998, Journal of Symbolic Logic.
[19] H. Luckhardt. Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .
[20] K. Gödel,et al. Kurt Gödel : collected works , 1986 .
[21] Ulrich Kohlenbach,et al. Effective bounds from ineffective proofs in analysis: An application of functional interpretation and majorization , 1992, Journal of Symbolic Logic.
[22] A. Nerode,et al. Review: S. C. Kleene, Recursive Functionals and Quantifiers of Finite Types I , 1962 .
[23] Rohit Parikh,et al. Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.
[24] Paulo Oliva,et al. Proof mining in L1-approximation , 2003, Ann. Pure Appl. Log..
[25] Paulo Oliva,et al. Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..
[26] U. Kohlenbach. Analysing proofs in analysis , 1996 .
[27] Marc Bezem,et al. Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.
[28] M. Dummett. Elements of Intuitionism , 2000 .
[29] Mariko Yasugi. Intuitionistic analysis and Gödel's interpretation , 1963 .
[30] H. Keisler,et al. Handbook of mathematical logic , 1977 .
[31] Ulrich Kohlenbach,et al. On uniform weak König's lemma , 2002, Ann. Pure Appl. Log..
[32] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[33] Alan Bundy,et al. Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.
[34] J. Diller. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .
[35] Paulo Oliva,et al. Proof Mining: A Systematic Way of Analysing Proofs in Mathematics , 2002 .
[36] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[37] Ulrich Kohlenbach,et al. Some logical metatheorems with applications in functional analysis , 2003 .
[38] Fernando Ferreira,et al. A feasible theory for analysis , 1994, Journal of Symbolic Logic.
[39] Ulrich Kohlenbach,et al. Proof theory and computational analysis , 1997, COMPROX.