Bounded functional interpretation

We present a new functional interpretation, based on a novel assignment of formulas. In contrast with Godel's functional "Dialectica" interpretation, the new interpre- tation does not care for precise witnesses of existential statements, but only for bounds for them. New principles are supported by our interpretation, including (a version of) the FAN theorem, weak Konig's lemma and the lesser limited principle of omniscience. Conspicuous among these principles are also refutations of some laws of classical logic. Notwithstanding, we end up discussing some applications of the new interpretation to theories of classical arithmetic and analysis.

[1]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[2]  Paulo Oliva,et al.  Proof mining in L 1-approximation , 2001 .

[3]  U. Kohlenbach Foundational and Mathematical Uses of Higher Types , 1999 .

[4]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[5]  Ulrich Kohlenbach,et al.  Effective Moduli from Ineffective Uniqueness Proofs. An Unwinding of de La Vallée Poussin's Proof for Chebycheff Approximation , 1993, Ann. Pure Appl. Log..

[6]  U. Kohlenbach A QUANTITATIVE VERSION OF A THEOREM DUE TO BORWEIN-REICH-SHAFRIR , 2001 .

[7]  F. Richman,et al.  Varieties of Constructive Mathematics: CONSTRUCTIVE ALGEBRA , 1987 .

[8]  Ulrich Kohlenbach,et al.  Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..

[9]  Ulrich Kohlenbach A note on Spector's quantifier-free rule of extensionality , 2001, Arch. Math. Log..

[10]  Paulo Oliva Polynomial-time algorithms from ineffective proofs , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[11]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[12]  Jeremy Avigad,et al.  Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .

[13]  S. Kuroda Intuitionistische Untersuchungen der formalistischen Logik , 1951, Nagoya Mathematical Journal.

[14]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[15]  Ulrich Kohlenbach,et al.  Pointwise hereditary majorization and some applications , 1992, Arch. Math. Log..

[16]  Ulrich Kohlenbach,et al.  The Use of a Logical Principle of Uniform Boundedness in Analysis , 1999 .

[17]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .

[18]  Ulrich Kohlenbach,et al.  Relative constructivity , 1998, Journal of Symbolic Logic.

[19]  H. Luckhardt Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .

[20]  K. Gödel,et al.  Kurt Gödel : collected works , 1986 .

[21]  Ulrich Kohlenbach,et al.  Effective bounds from ineffective proofs in analysis: An application of functional interpretation and majorization , 1992, Journal of Symbolic Logic.

[22]  A. Nerode,et al.  Review: S. C. Kleene, Recursive Functionals and Quantifiers of Finite Types I , 1962 .

[23]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[24]  Paulo Oliva,et al.  Proof mining in L1-approximation , 2003, Ann. Pure Appl. Log..

[25]  Paulo Oliva,et al.  Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..

[26]  U. Kohlenbach Analysing proofs in analysis , 1996 .

[27]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[28]  M. Dummett Elements of Intuitionism , 2000 .

[29]  Mariko Yasugi Intuitionistic analysis and Gödel's interpretation , 1963 .

[30]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[31]  Ulrich Kohlenbach,et al.  On uniform weak König's lemma , 2002, Ann. Pure Appl. Log..

[32]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[33]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[34]  J. Diller Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .

[35]  Paulo Oliva,et al.  Proof Mining: A Systematic Way of Analysing Proofs in Mathematics , 2002 .

[36]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[37]  Ulrich Kohlenbach,et al.  Some logical metatheorems with applications in functional analysis , 2003 .

[38]  Fernando Ferreira,et al.  A feasible theory for analysis , 1994, Journal of Symbolic Logic.

[39]  Ulrich Kohlenbach,et al.  Proof theory and computational analysis , 1997, COMPROX.