Scalable Inference for Gaussian Process Models with Black-Box Likelihoods
暂无分享,去创建一个
[1] R. Jarrett. A note on the intervals between coal-mining disasters , 1979 .
[2] J. Møller,et al. Log Gaussian Cox Processes , 1998 .
[3] David Barber,et al. Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Stefan Schaal,et al. Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .
[5] Stefan Schaal,et al. Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space , 2000, ICML.
[6] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[7] Carl E. Rasmussen,et al. Warped Gaussian Processes , 2003, NIPS.
[8] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[9] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[10] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.
[11] C. Rasmussen,et al. Approximations for Binary Gaussian Process Classification , 2008 .
[12] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[13] Manfred Opper,et al. The Variational Gaussian Approximation Revisited , 2009, Neural Computation.
[14] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[15] Ryan P. Adams,et al. Elliptical slice sampling , 2009, AISTATS.
[16] Neil D. Lawrence,et al. Efficient Multioutput Gaussian Processes through Variational Inducing Kernels , 2010, AISTATS.
[17] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[18] Andrew Gordon Wilson,et al. Gaussian Process Regression Networks , 2011, ICML.
[19] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[20] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[21] Edwin V. Bonilla,et al. Collaborative Multi-output Gaussian Processes , 2014, UAI.
[22] Carl E. Rasmussen,et al. Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.
[23] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[24] Edwin V. Bonilla,et al. Fast Allocation of Gaussian Process Experts , 2014, ICML.
[25] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[26] Edwin V. Bonilla,et al. Automated Variational Inference for Gaussian Process Models , 2014, NIPS.
[27] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[28] Le Song,et al. A la Carte - Learning Fast Kernels , 2014, AISTATS.
[29] Pedro M. Domingos,et al. Unifying Logical and Statistical AI , 2006, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).