Colloquium: Experiments in vortex avalanches

Avalanche dynamics is found in many phenomena spanning from earthquakes to the evolution of species. It can be also found in vortex matter when a type II superconductor is externally driven, for example, by increasing the magnetic field. Vortex avalanches associated with thermal instabilities can be an undesirable effect for applications, but "dynamically driven" avalanches emerging from the competition between intervortex interactions and quenched disorder constitute an interesting scenario to test theoretical ideas related with non-equilibrium dynamics. However, differently from the equilibrium phases of vortex matter in type II superconductors, the study of the corresponding dynamical phases - in which avalanches can play a role - is still in its infancy. In this paper we critically review relevant experiments performed in the last decade or so, emphasizing the ability of different experimental techniques to establish the nature and statistical properties of the observed avalanche behavior.

[1]  Ernst Helmut Brandt,et al.  Susceptibility of superconductor disks and rings with and without flux creep , 1997 .

[2]  Bishop,et al.  Observation of magnetic-field penetration via dendritic growth in superconducting niobium films. , 1995, Physical review. B, Condensed matter.

[3]  Wang,et al.  Thermally activated flux avalanches in single crystals of high-Tc superconductors. , 1993, Physical review. B, Condensed matter.

[4]  Field,et al.  Superconducting vortex avalanches. , 1995, Physical review letters.

[5]  Rosenbaum,et al.  Vortex avalanches at one thousandth the superconducting transition temperature. , 1996, Physical review. B, Condensed matter.

[6]  G. Rochlin,et al.  FLUX JUMP SIZE DISTRIBUTION IN LOW-kappa TYPE-II SUPERCONDUCTORS. , 1968 .

[7]  Simple model for plastic dynamics of a disordered flux-line lattice , 2000, cond-mat/0009278.

[8]  F. Nori,et al.  Critical dynamics of burst instabilities in the Portevin-Le Ch atelier effect. , 2000, Physical review letters.

[9]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[10]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Plastic flow, voltage noise and vortex avalanches in superconductors , 1996, cond-mat/9612078.

[12]  Cunningham,et al.  Imaging of avalanches in granular materials. , 1992, Physical review letters.

[13]  S. Bending,et al.  Dynamics of individual vortices and flux bundles in Nb films , 1995 .

[14]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[15]  C. P. Bean Magnetization of hard superconductors , 1962 .

[16]  Simple Model of Superconducting Vortex Avalanches , 1998, cond-mat/9804249.

[17]  Braided Rivers and Superconducting Vortex Avalanches , 1999, cond-mat/9901228.

[18]  D. Sornette,et al.  SPONTANEOUS GENERATION OF DISCRETE SCALE INVARIANCE IN GROWTH MODELS , 1997 .

[19]  Clem,et al.  Magnetization and transport currents in thin superconducting films. , 1994, Physical review. B, Condensed matter.

[20]  Lee,et al.  Correlation of Vortex Motion in High-Tc Superconductors. , 1995, Physical review letters.

[21]  Mohamed Henini,et al.  Real‐time scanning Hall probe microscopy , 1996 .

[22]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[23]  J. E. Evetts,et al.  Flux vortices and transport currents in type II superconductors , 2001 .

[24]  D. Fisher,et al.  Depinning with Dynamic Stress Overshoots , 2001 .

[25]  Real-time magneto-optical imaging of vortices in superconducting NbSe2 , 2001, cond-mat/0104280.

[26]  Daniel A. Lidar,et al.  Is the Geometry of Nature Fractal? , 1998, Science.

[27]  Avalanches in one-dimensional piles with different types of bases. , 2001, Physical review letters.

[28]  Optical Detection of Domain Structure and Current Flow in Superconducting Lead Films , 1962 .

[29]  Dendritic flux patterns in MgB2 films , 2001, cond-mat/0108092.

[30]  M. Wertheimer,et al.  Flux jumps in type II superconductors , 1967 .

[31]  S. Bending,et al.  Local magnetic probes of superconductors , 1999 .

[32]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[33]  A. Malozemoff,et al.  Magnetic relaxation in high-temperature superconductors , 1996 .

[34]  E. Bonabeau,et al.  On the effective activation energy due to flux avalanches in the Bean state , 1996 .

[35]  M. Sigrist,et al.  Vortex pinning and stability in the low field, superconducting phases of UPt_3 , 1998 .

[36]  Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: Effect of the microscopic pinning landscape on the macroscopic properties , 1997, cond-mat/9709214.

[37]  Rosendahl,et al.  Persistent self-organization of sandpiles. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .

[39]  Vinokur,et al.  Quantum collective creep. , 1991, Physical review letters.

[40]  Wu,et al.  Scaling and universality in avalanches. , 1989, Physical review. A, General physics.

[41]  S. Herminghaus,et al.  Nucleation and growth of a flux instability in superconducting YBa2Cu3O7-x films. , 1993, Physical review letters.

[42]  A. Larkin,et al.  Pinning in type II superconductors , 1979 .

[43]  Keane,et al.  Experimental study of critical-mass fluctuations in an evolving sandpile. , 1990, Physical review letters.

[44]  Paczuski,et al.  Universality in Sandpiles, Interface Depinning, and Earthquake Models. , 1996, Physical review letters.

[45]  Nori,et al.  Water droplet avalanches. , 1993, Physical review letters.

[46]  R. Griessen,et al.  Kinetic roughening of penetrating flux fronts in High-Tc thin film superconductors , 1999 .

[47]  Field,et al.  Marginal stability and chaos in coupled faults modeled by nonlinear circuits. , 1995, Physical review letters.

[48]  C. F. Hempstead,et al.  Flux Creep in Hard Superconductors , 1963 .

[49]  P. E. Goa,et al.  Dendritic magnetic instability in superconducting MgB2 films , 2001, cond-mat/0104113.

[50]  M. Koblischka,et al.  Magneto-optical investigations of superconductors , 1995 .

[51]  Chao Tang SOC and the Bean critical state , 1993 .

[52]  A. Milner High-field flux jumps in BSCCO at very low temperature , 2001 .

[53]  R. Lin,et al.  MECHANICAL ALLOYING OF AN IMMISCIBLE ALPHA -FE-2O3-SNO2 CERAMIC , 1997 .

[54]  Daniel A. Lidar,et al.  The Limited Scaling Range of Empirical Fractals , 1998 .

[55]  Newman,et al.  Avalanches, scaling, and coherent noise. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Universality of vortex avalanches in a type II superconductor with periodic pinning , 1999, cond-mat/9905390.

[57]  O'Brien,et al.  Statistical signatures of self-organization. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[58]  A. Barone,et al.  Physics and Applications of the Josephson Effect , 1982 .

[59]  M. Naughton,et al.  Flux jump avalanches in torque studies of single crystal YBa2Cu3O7−δ , 1999 .

[60]  H. Shtrikman,et al.  Scanning Hall probe microscope images of field penetration into niobium films , 2000 .

[61]  I. Rudnev,et al.  Dendritic flux avalanches in superconducting Nb3Sn films , 2002, cond-mat/0211349.

[62]  Marcel den Nijs,et al.  Directed avalanche processes with underlying interface dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Rosendahl,et al.  Predictability of large avalanches on a sandpile. , 1994, Physical review letters.

[64]  Paczuski,et al.  Theoretical results for sandpile models of self-organized criticality with multiple topplings , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  A. Rakhmanov,et al.  Critical state stability in type-II superconductors and superconducting-normal-metal composites , 1981 .

[66]  Vinokur,et al.  Exact solution for flux creep with logarithmic U(j) dependence: Self-organized critical state in high-Tc superconductors. , 1991, Physical review letters.

[67]  V. Frette,et al.  Avalanche dynamics in a pile of rice , 1996, Nature.