On Restrictions of Balanced 2-Interval Graphs

The class of 2-interval graphs has been introduced for modelling scheduling and allocation problems, and more recently for specific bioinformatics problems. Some of those applications imply restrictions on the 2-interval graphs, and justify the introduction of a hierarchy of subclasses of 2-interval graphs that generalize line graphs: balanced 2- interval graphs, unit 2-interval graphs, and (x,x)-interval graphs. We provide instances that show that all inclusions are strict. We extend the NP-completeness proof of recognizing 2-interval graphs to the recognition of balanced 2-interval graphs. Finally we give hints on the complexity of unit 2-interval graphs recognition, by studying relationships with other graph classes: proper circular-arc, quasi-line graphs, K1,5-free graphs, . . .

[1]  Magnús M. Halldórsson,et al.  Strip Graphs: Recognition and Scheduling , 2006, WG.

[2]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[3]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[4]  João Meidanis,et al.  Determining DNA Sequence Similarity Using Maximum Independent Set Algorithms for Interval Graphs , 1992, SWAT.

[5]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[6]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[7]  Stéphane Vialette Aspects algorithmiques de la prédiction des structures secondaires d'ARN , 2001 .

[8]  Guillaume Fertin,et al.  New Results for the 2-Interval Pattern Problem , 2004, CPM.

[9]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[10]  Stéphane Vialette,et al.  On the computational complexity of 2-interval pattern matching problems , 2004, Theor. Comput. Sci..

[11]  D. West,et al.  Every outerplanar graph is the union of two interval graphs , 1999 .

[12]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[13]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[14]  Gad M. Landau,et al.  Approximating the 2-interval pattern problem , 2005, Theor. Comput. Sci..

[15]  R. Ravi,et al.  Nonoverlapping Local Alignments (weighted Independent Sets of Axis-parallel Rectangles) , 1996, Discret. Appl. Math..

[16]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.