Ab initio determination of solid-state nanostructure

Advances in materials science and molecular biology followed rapidly from the ability to characterize atomic structure using single crystals. Structure determination is more difficult if single crystals are not available. Many complex inorganic materials that are of interest in nanotechnology have no periodic long-range order and so their structures cannot be solved using crystallographic methods. Here we demonstrate that ab initio structure solution of these nanostructured materials is feasible using diffraction data in combination with distance geometry methods. Precise, sub-ångström resolution distance data are experimentally available from the atomic pair distribution function (PDF). Current PDF analysis consists of structure refinement from reasonable initial structure guesses and it is not clear, a priori, that sufficient information exists in the PDF to obtain a unique structural solution. Here we present and validate two algorithms for structure reconstruction from precise unassigned interatomic distances for a range of clusters. We then apply the algorithms to find a unique, ab initio, structural solution for C60 from PDF data alone. This opens the door to sub-ångström resolution structure solution of nanomaterials, even when crystallographic methods fail.

[1]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low-order scaling with cluster size , 1999, J. Comput. Chem..

[2]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[3]  M. Kanatzidis,et al.  Beyond Crystallography: The Study of Disorder, Nanocrystallinity and Crystallographically Challenged Materials with Pair Distribution Functions , 2004 .

[4]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[5]  Xueguang Shao,et al.  A fast annealing evolutionary algorithm for global optimization , 2002, J. Comput. Chem..

[6]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[7]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.

[8]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[9]  M. Terrones,et al.  Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction , 2004 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  A. Wright Diffraction studies of glass structure : The first 70 years , 1998 .

[12]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[13]  De Nyago Tafen,et al.  Experimentally constrained molecular relaxation: The case of glassy Ge Se 2 , 2005 .

[14]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[15]  M. Laue,et al.  Interferenzerscheinungen bei Röntgenstrahlen , 1913 .

[16]  K. Shankland,et al.  Structure determination from powder diffraction data. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[17]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[18]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[19]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[20]  A M Gronenborn,et al.  Determining the structures of large proteins and protein complexes by NMR. , 1998, Trends in biotechnology.

[21]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[22]  W. Bragg,et al.  The Reflection of X-rays by Crystals , 1913 .

[23]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[24]  A. Millis Lattice effects in magnetoresistive manganese perovskites , 1998, Nature.

[25]  Anthony K. Cheetham,et al.  Structure Determination from Powder Diffraction Data , 1997 .

[26]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[27]  V. A. Levashov,et al.  Notes on the Analysis of Data for Pair Distribution Functions , 2002 .

[28]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[29]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[30]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[31]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[32]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.