Industry 4.0: contributions of holonic manufacturing control architectures and future challenges

The flexibility claimed by the next generation production systems induces a deep modification of the behaviour and the core itself of the control systems. Over-connectivity and data management abilities targeted by Industry 4.0 paradigm enable the emergence of more flexible and reactive control systems, based on the cooperation of autonomous and connected entities in the decision-making process. From most relevant articles extracted from existing literature, a list of 10 key enablers for Industry 4.0 is first presented. During the last 20 years, the holonic paradigm has become a major paradigm of Intelligent Manufacturing Systems. After the presentation of the holonic paradigm and holon properties, this article highlights how historical and current holonic control architectures can partly fulfil I4.0 key enablers. The remaining unfulfilled key enablers are then the subject of an extensive discussion on the remaining research perspectives on holonic architectures needed to achieve a complete support of Industry4.0.

[1]  M. Pirani,et al.  A systems and control perspective of CPS security , 2019, Annu. Rev. Control..

[2]  法政大学イノベーション・マネジメント研究センター イノベーション・マネジメント = Journal of innovation management , 2004 .

[3]  Damien Trentesaux,et al.  ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling , 2014, Comput. Ind..

[4]  Kagermann Henning Recommendations for implementing the strategic initiative INDUSTRIE 4.0 , 2013 .

[5]  Michele Dassisti,et al.  Ontological approach for product-centric information system interoperability in networked manufacturing enterprises , 2017 .

[6]  Damien Trentesaux,et al.  A Human-Centred Design to Break the Myth of the "Magic Human" in Intelligent Manufacturing Systems , 2015, SOHOMA.

[7]  Boris Otto,et al.  Design Principles for Industrie 4.0 Scenarios , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[8]  Åsa Fast-Berglund,et al.  The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems , 2016, APMS.

[9]  F BabiceanuRadu,et al.  Big Data and virtualization for manufacturing cyber-physical systems , 2016 .

[10]  Lihui Wang,et al.  Combined strength of holons, agents and function blocks in cyber-physical systems , 2016 .

[11]  Qing Wang,et al.  Security threats and measures for the cyber-physical systems , 2013 .

[12]  Michele Dassisti,et al.  ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment , 2012, Adv. Eng. Informatics.

[13]  Francisco Almada-Lobo,et al.  The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES) , 2016 .

[14]  Ivan Prebil,et al.  Virtual approach to holonic control of the tyre-manufacturing system , 2014 .

[15]  Octavian Morariu,et al.  Formalized Information Representation for Intelligent Products in Service-Oriented Manufacturing , 2013 .

[16]  Stefan Bussmann,et al.  Holonic control of an engine assembly plant: an industrial evaluation , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[17]  Antonio Padovano,et al.  Smart operators in industry 4.0: A human-centered approach to enhance operators' capabilities and competencies within the new smart factory context , 2017, Comput. Ind. Eng..

[18]  István Mezgár,et al.  New perspectives for the future interoperable enterprise systems , 2016, Comput. Ind..

[19]  António Grilo,et al.  Factories of the future: challenges and leading innovations in intelligent manufacturing , 2017, Int. J. Comput. Integr. Manuf..

[20]  Douglas H. Norrie,et al.  Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey , 1999, Knowledge and Information Systems.

[21]  Fabio Bellifemine,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[22]  Jean-Pierre Lorré,et al.  Mediation Information System Design in a Collaborative SOA Context through a MDD Approach , 2008 .

[23]  Malte Brettel,et al.  How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective , 2014 .

[24]  Damien Trentesaux,et al.  Event management architecture for the monitoring and diagnosis of a fleet of trains: a case study , 2019, Journal of Modern Transportation.

[25]  Damith Chinthana Ranasinghe,et al.  Enabling through life product-instance management: Solutions and challenges , 2011, J. Netw. Comput. Appl..

[26]  Hendrik Van Brussel,et al.  Predicting the unexpected , 2011, Comput. Ind..

[27]  Paul Valckenaers,et al.  Holonic Manufacturing Execution Systems , 2005 .

[28]  Damien Trentesaux,et al.  Distributed control of production systems , 2009, Eng. Appl. Artif. Intell..

[29]  José Barbosa,et al.  Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution , 2015, Comput. Ind..

[30]  Damien Trentesaux,et al.  Foundation of the Surfer Data Management Architecture and Its Application to Train Transportation , 2017, SOHOMA.

[31]  Patrick Pujo,et al.  PROSIS: An isoarchic structure for HMS control , 2009, Eng. Appl. Artif. Intell..

[32]  Anabela Carvalho Alves,et al.  Smart products development approaches for Industry 4.0 , 2017 .

[33]  Hendrik Van Brussel,et al.  Engineering manufacturing control systems using PROSA and delegate MAS , 2008, Int. J. Agent Oriented Softw. Eng..

[34]  Andrew Kusiak,et al.  Service manufacturing: Basic concepts and technologies , 2019, Journal of Manufacturing Systems.

[35]  Paul Valckenaers ARTI Reference Architecture - PROSA Revisited , 2018, SOHOMA.

[36]  André Thomas,et al.  Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges , 2017, J. Intell. Manuf..

[37]  Damien Trentesaux,et al.  Switching mode control strategy in manufacturing execution systems , 2015 .

[38]  H. Simon,et al.  The sciences of the artificial (3rd ed.) , 1996 .

[39]  José L. Martínez Lastra,et al.  Cloud computing as a facilitator for web service composition in factory automation , 2019, J. Intell. Manuf..

[40]  Yuan Xue,et al.  A language for describing attacks on cyber-physical systems , 2015, Int. J. Crit. Infrastructure Prot..

[41]  Adriana Giret,et al.  An engineering framework for Service-Oriented Intelligent Manufacturing Systems , 2016, Comput. Ind..

[42]  Ahmed Kouider,et al.  Distributed multi-agent scheduling and control system for robotic flexible assembly cells , 2019, J. Intell. Manuf..

[43]  GiretAdriana,et al.  An engineering framework for Service-Oriented Intelligent Manufacturing Systems , 2016 .

[44]  António Grilo,et al.  Factories of the future: challenges and leading innovations in intelligent manufacturing , 2017, Int. J. Comput. Integr. Manuf..

[45]  Dimitris Kiritsis,et al.  An ontology-based approach for Product Lifecycle Management , 2010, Comput. Ind..

[46]  R. Pannequin,et al.  Proposition d'un environnement de modélisation et de test d'architectures de pilotage par le produit de systèmes de production , 2007 .

[47]  G. Seliger,et al.  Opportunities of Sustainable Manufacturing in Industry 4.0 , 2016 .

[48]  H. Simon The Sciences of the Artificial, (Third edition) , 1997 .

[49]  Sergio Terzi,et al.  A holonic metamodel for product traceability in Product Lifecycle Management , 2007 .

[50]  Remzi Seker,et al.  Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook , 2016, Comput. Ind..

[51]  Maja J. Matarić,et al.  Designing emergent behaviors: from local interactions to collective intelligence , 1993 .

[52]  Duncan C. McFarlane,et al.  A holonic component-based approach to reconfigurable manufacturing control architecture , 2000, Proceedings 11th International Workshop on Database and Expert Systems Applications.

[53]  Marcela Vegetti,et al.  PRONTO: An ontology for comprehensive and consistent representation of product information , 2011, Eng. Appl. Artif. Intell..

[54]  Anne L'Anton,et al.  A modeling framework for manufacturing services in Service-oriented Holonic Manufacturing Systems , 2016, Eng. Appl. Artif. Intell..

[55]  László Monostori,et al.  ScienceDirect Variety Management in Manufacturing . Proceedings of the 47 th CIRP Conference on Manufacturing Systems Cyber-physical production systems : Roots , expectations and R & D challenges , 2014 .

[56]  Jay Lee,et al.  Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment , 2014 .

[57]  Bruce M. McMillin,et al.  Analysis of information flow security in cyber-physical systems , 2010, Int. J. Crit. Infrastructure Prot..

[58]  Wided Guédria,et al.  Supporting interoperability in complex adaptive enterprise systems: A domain specific language approach , 2016, Data Knowl. Eng..

[59]  Damien Trentesaux,et al.  Emerging Key Requirements for Future Energy-Aware Production Scheduling Systems: A Multi-agent and Holonic Perspective , 2016, SOHOMA.

[60]  Jay Lee,et al.  Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation , 2015 .

[61]  Wolfgang Wahlster,et al.  Industrie 4 . 0 Maturity Index Managing the Digital Transformation of Companies , 2017 .

[62]  László Monostori,et al.  Agent-based systems for manufacturing , 2006 .

[63]  Agostino Poggi,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[64]  Beata Mrugalska,et al.  Towards Lean Production in Industry 4.0 , 2017 .

[65]  Damien Trentesaux,et al.  A stigmergic approach for dynamic routing of active products in FMS , 2009, Comput. Ind..

[66]  WeichhartGeorg,et al.  Supporting interoperability in complex adaptive enterprise systems , 2016 .

[67]  Stefan Bussmann Daimler-Benz An Agent-Oriented Architecture for Holonic Manufacturing Control , 2007 .

[68]  Jan Holmström,et al.  Intelligent Products: A survey , 2009, Comput. Ind..

[69]  Vicent J. Botti,et al.  Holons and agents , 2004, J. Intell. Manuf..

[70]  Yang Liu,et al.  Abnormal traffic-indexed state estimation: A cyber-physical fusion approach for Smart Grid attack detection , 2015, Future Gener. Comput. Syst..

[71]  Duncan McFarlane,et al.  Service Orientation in Holonic and Multi-agent Manufacturing , 2015, Service Orientation in Holonic and Multi-agent Manufacturing.

[72]  Theodor Borangiu,et al.  Holonic Hybrid Supervised Control of Semi-continuous Radiopharmaceutical Production Processes , 2019 .

[73]  Damien Trentesaux,et al.  An effective potential field approach to FMS holonic heterarchical control , 2012 .

[74]  Octavian Morariu,et al.  Manufacturing Systems at Scale with Big Data Streaming and Online Machine Learning , 2017, SOHOMA.

[75]  Gérard Morel,et al.  Traceability and management of dispersed product knowledge during design and manufacturing , 2011, Comput. Aided Des..

[76]  Fernando Deschamps,et al.  Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal , 2017, Int. J. Prod. Res..

[77]  Paulo Leitão,et al.  Benchmarking flexible job-shop scheduling and control systems , 2013 .

[78]  Paulo Leitão,et al.  Pollux: a dynamic hybrid control architecture for flexible job shop systems , 2017, Int. J. Prod. Res..

[79]  M. Blanchet,et al.  Industrie 4.0: the new industrial revolution. How Europe will succeed , 2014 .

[80]  Günther Schuh,et al.  Promoting Work-based Learning through Industry 4.0 , 2015 .

[81]  A Koestler,et al.  Ghost in the Machine , 1970 .

[82]  Reid G. Smith,et al.  The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver , 1980, IEEE Transactions on Computers.

[83]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[84]  Fei Tao,et al.  A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing , 2019, IEEE Access.

[85]  Carlos Eduardo Pereira,et al.  Historical survey and emerging challenges of manufacturing automation modeling and control: A systems architecting perspective , 2019, Annu. Rev. Control..

[86]  Anne L'Anton,et al.  Proposition of an Implementation Framework Enabling Benchmarking of Holonic Manufacturing Systems , 2017, SOHOMA.

[87]  François Jammes,et al.  Service-oriented paradigms in industrial automation , 2005, IEEE Transactions on Industrial Informatics.

[88]  Weiming Shen,et al.  Applications of agent-based systems in intelligent manufacturing: An updated review , 2006, Adv. Eng. Informatics.

[89]  D. McFarlane,et al.  Holonic Manufacturing Control: Rationales, Developments and Open Issues , 2003 .

[90]  Damien Trentesaux,et al.  Embedded holonic fault diagnosis of complex transportation systems , 2013, Eng. Appl. Artif. Intell..

[91]  Hendrik Van Brussel,et al.  Multi-agent coordination and control using stigmergy , 2004, Comput. Ind..

[92]  Van BrusselHendrik,et al.  Reference architecture for holonic manufacturing systems , 1998 .

[93]  Frantisek Zezulka,et al.  Industry 4.0 – An Introduction in the phenomenon , 2016 .

[94]  Paulo Leitão,et al.  ADACOR: A holonic architecture for agile and adaptive manufacturing control , 2006, Comput. Ind..

[95]  José Barbosa,et al.  Cross benefits from cyber-physical systems and intelligent products for future smart industries , 2016, 2016 IEEE 14th International Conference on Industrial Informatics (INDIN).

[96]  Abdelghani Bekrar,et al.  The control of myopic behavior in semi-heterarchical production systems: A holonic framework , 2013, Eng. Appl. Artif. Intell..

[97]  Jean-Charles Pomerol Decision Making and Action , 2012 .

[98]  Birgit Vogel-Heuser,et al.  Guest Editorial Industry 4.0-Prerequisites and Visions , 2016, IEEE Trans Autom. Sci. Eng..

[99]  Maharshi Harshadbhai Dhada,et al.  Multi-agent system architectures for collaborative prognostics , 2019, Journal of Intelligent Manufacturing.

[100]  Jaime A. Camelio,et al.  A cyber-physical attack taxonomy for production systems: a quality control perspective , 2019, J. Intell. Manuf..

[101]  Rumi Ghosh,et al.  Manufacturing Analytics and Industrial Internet of Things , 2017, IEEE Intelligent Systems.

[102]  Remzi Seker,et al.  Cyber resilience protection for industrial internet of things: A software-defined networking approach , 2019, Comput. Ind..

[103]  Wolfgang Weller,et al.  Auf dem Weg zur 4. Industriellen Revolution , 2014 .

[104]  Damien Trentesaux,et al.  Designing Ethical Cyber-Physical Industrial Systems , 2017 .

[105]  Luc Bongaerts,et al.  Reference architecture for holonic manufacturing systems: PROSA , 1998 .

[106]  Marcela Vegetti,et al.  PRoduct ONTOlogy: Defining product-related concepts for logistics planning activities , 2008, Comput. Ind..

[107]  Paulo Leitão,et al.  Agent-based distributed manufacturing control: A state-of-the-art survey , 2009, Eng. Appl. Artif. Intell..

[108]  Arthur Koestler,et al.  Janus: A Summing Up , 1978 .

[109]  Bernard T. Feld The high price of SALT , 1979 .

[110]  Young B. Moon,et al.  Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods , 2017, Journal of Intelligent Manufacturing.

[111]  Jean-Charles Pomerol,et al.  Decision Making and Action , 2012 .

[112]  Tsegay Tesfay Mezgebe,et al.  CoMM: a consensus algorithm for multi-agent-based manufacturing system to deal with perturbation , 2019, The International Journal of Advanced Manufacturing Technology.

[113]  A. Skoogh,et al.  Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030 , 2017 .