Tau approximate solution of weakly singular Volterra integral equations with Legendre wavelet basis

ABSTRACT In this paper, a spectral Tau method based on Legendre Wavelet basis is proposed. For this purpose we present a stable operational Tau method based on Legendre Wavelet basis. This method provides an efficient approximate solution for weakly singular Volterra integral equations by using reduced set of matrix operations. An error estimation of the Tau method is also introduced. Finally we demonstrate the validity and applicability of the method by numerical examples.

[1]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[2]  Yuesheng Xu,et al.  The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes , 1997, Adv. Comput. Math..

[3]  H. G. Khajah,et al.  Iterated solutions of linear operator equations with the Tau method , 1997, Math. Comput..

[4]  Mehdi Dehghan,et al.  Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method , 2010 .

[5]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[6]  Mehdi Dehghan,et al.  Space-time spectral method for a weakly singular parabolic partial integro-differential equation on irregular domains , 2014, Comput. Math. Appl..

[7]  H. J. Riele,et al.  Collocation Methods for Weakly Singular Second-kind Volterra Integral Equations with Non-smooth Solution , 1982 .

[8]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[9]  Mehdi Dehghan,et al.  Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets , 2011, J. Comput. Appl. Math..

[10]  Mohsen Razzaghi,et al.  The Legendre wavelets operational matrix of integration , 2001, Int. J. Syst. Sci..

[11]  Mehdi Dehghan,et al.  A Collocation Method for Solving Abel’S Integral Equations of First and Second Kinds , 2008 .

[12]  Hermann Brunner,et al.  Implicitly linear collocation methods for nonlinear Volterra equations , 1992 .

[13]  Wei-Sun Jiang,et al.  The Haar wavelets operational matrix of integration , 1996, Int. J. Syst. Sci..

[14]  Annamaria Palamara Orsi,et al.  A new approach to the numerical solution of weakly singular Volterra integral equations , 2004 .

[15]  Tao Tang,et al.  Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind , 2012 .

[16]  S. Shahmorad,et al.  Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation , 2003, Appl. Math. Comput..

[17]  Fazlollah Soleymani,et al.  Tau approximate solution of weakly singular Volterra integral equations , 2013, Math. Comput. Model..

[18]  A. J. Jerri Introduction to Integral Equations With Applications , 1985 .

[19]  Mehdi Dehghan,et al.  The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis , 2014 .

[20]  B. N. Mandal,et al.  Applied Singular Integral Equations , 2011 .

[21]  Eduardo L. Ortiz,et al.  An operational approach to the Tau method for the numerical solution of non-linear differential equations , 1981, Computing.

[22]  Robert Piessens,et al.  Computing integral transforms and solving integral equations using Chebyshev polynomial approximations , 2000 .