Multiple Components of the Jhelum Stellar Stream

In simple models of the Milky Way, tidally disrupting satellites produce long and thin---nearly one-dimensional---stellar streams. Using astrometric data from the Gaia second data release and photometry from the Dark Energy Survey, we demonstrate that the Jhelum stream, a stellar stream in the inner halo, is a two-dimensional structure. The spatial distribution of highly probable Jhelum members reveals a dense thin component and an associated diffuse, spatially offset component. These two spatial components have indistinguishable proper motions (at $\sigma\sim1\,\rm mas\,yr^{-1}$ level) and a similar ratio of blue straggler to blue horizontal branch stars, which indicates a common origin for the two components. The best-fit orbit to the narrow component (pericenter $8\,\rm kpc$, apocenter $24\,\rm kpc$), however, does not explain the wide component of the Jhelum stream. On the other hand, an older orbital wrap of Jhelum's orbit traces the Indus stream, indicating a possible connection between these two structures and additional complexity in Jhelum's formation. Substructure in the Jhelum progenitor or precession of its tidal debris in the Milky Way potential may explain the observed structure of Jhelum. Future spectroscopic data will enable discrimination between these "nature" and "nurture" formation scenarios. Jhelum adds to the growing list of cold stellar streams that display complex morphologies and promise to reveal the dynamical history of the Milky Way.

[1]  V. Belokurov,et al.  Forensics of Subhalo-Stream Encounters: The Three Phases of Gap Growth , 2014, 1412.6035.

[2]  Adrian M. Price-Whelan,et al.  The Spur and the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo , 2018, The Astrophysical Journal.

[3]  D. Hogg,et al.  Chaotic dispersal of tidal debris , 2015, 1507.08662.

[4]  C. Grillmair,et al.  THE PAL 5 STAR STREAM GAPS , 2012, 1209.1741.

[5]  Sergey E. Koposov,et al.  The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  Tidal Streams as Probes of the Galactic Potential , 1998, astro-ph/9807243.

[7]  D. Spergel,et al.  How Lumpy Is the Milky Way’s Dark Matter Halo? , 2001, astro-ph/0111196.

[8]  Sergey E. Koposov,et al.  A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique , 2016, Monthly Notices of the Royal Astronomical Society.

[9]  Jo Bovy,et al.  Stellar inventory of the solar neighbourhood using Gaia DR1 , 2017, 1704.05063.

[10]  D. Hogg,et al.  CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES , 2010, 1012.2884.

[11]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[12]  A. Price-Whelan,et al.  Tidal Features at 0.05 < z < 0.45 in the Hyper Suprime-Cam Subaru Strategic Program: Properties and Formation Channels , 2018, The Astrophysical Journal.

[13]  V. Belokurov,et al.  Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials , 2016, 1603.08922.

[14]  S. Tremaine,et al.  The geometry of phase mixing , 1998, astro-ph/9812146.

[15]  N. Martin,et al.  FEELING THE PULL: A STUDY OF NATURAL GALACTIC ACCELEROMETERS. I. PHOTOMETRY OF THE DELICATE STELLAR STREAM OF THE PALOMAR 5 GLOBULAR CLUSTER , 2015, 1512.03054.

[16]  N. Martin,et al.  Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  DETECTION OF A 63 COLD STELLAR STREAM IN THE SLOAN DIGITAL SKY SURVEY , 2006, astro-ph/0604332.

[18]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[19]  R. Carlberg STAR STREAM FOLDING BY DARK GALACTIC SUBHALOS , 2009, 0908.4345.

[20]  D. Hogg,et al.  MILKY WAY MASS AND POTENTIAL RECOVERY USING TIDAL STREAMS IN A REALISTIC HALO , 2014, 1406.6063.

[21]  D. Hogg,et al.  The Information Content in Cold Stellar Streams , 2018, 1804.06854.

[22]  David W. Hogg,et al.  Globular Cluster Streams as Galactic High-Precision Scales - The Poster Child Palomar 5 , 2015 .

[23]  M. Fardal,et al.  Generation of mock tidal streams , 2014, 1410.1861.

[24]  H. Rix,et al.  SPENDING TOO MUCH TIME AT THE GALACTIC BAR: CHAOTIC FANNING OF THE OPHIUCHUS STREAM , 2016, 1601.06790.

[25]  V. Belokurov,et al.  The progenitors of the Milky Way stellar halo: big bricks favoured over little bricks , 2015, 1501.02806.

[26]  Jeffrey L. Carlin,et al.  Stellar Streams and Clouds in the Galactic Halo , 2016, 1603.08936.

[27]  A. Price-Whelan,et al.  Gaps and length asymmetry in the stellar stream Palomar 5 as effects of Galactic bar rotation , 2017, 1703.04627.

[28]  Adrian M. Price-Whelan,et al.  Gala: A Python package for galactic dynamics , 2017, J. Open Source Softw..

[29]  Uncovering cold dark matter halo substructure with tidal streams , 2001, astro-ph/0110690.

[30]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[31]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[32]  R. Nichol,et al.  Stellar Streams Discovered in the Dark Energy Survey , 2018, The Astrophysical Journal.

[33]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[34]  Hasanuddin,et al.  Tidal ribbons , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[36]  B. Yanny,et al.  The Extended Tails of Palomar 5: A 10° Arc of Globular Cluster Tidal Debris , 2003, astro-ph/0307446.

[37]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[38]  Philip G. Breen,et al.  Stellar envelopes of globular clusters embedded in dark mini-haloes , 2017, 1706.02710.

[39]  C. Grillmair,et al.  GAPS IN THE GD-1 STAR STREAM , 2013, 1303.4342.

[40]  S. Zaggia,et al.  The blue plume population in dwarf spheroidal galaxies - Genuine blue stragglers or young stellar population? , 2007, 0704.1430.

[41]  Adrian M. Price-Whelan,et al.  Off the Beaten Path: Gaia Reveals GD-1 Stars outside of the Main Stream , 2018, The Astrophysical Journal.

[42]  T. Tal,et al.  THE FREQUENCY OF TIDAL FEATURES ASSOCIATED WITH NEARBY LUMINOUS ELLIPTICAL GALAXIES FROM A STATISTICALLY COMPLETE SAMPLE , 2009, 0908.1382.

[43]  A. Szalay,et al.  DISPERSAL OF TIDAL DEBRIS IN A MILKY-WAY-SIZED DARK MATTER HALO , 2016, 1601.04681.

[44]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[45]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[46]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[47]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .