A method to improve tracking and particle identification in TPCs and silicon detectors

The measurement of the ionization by charged particles in a medium (gas or condensed) together with the measurement of their momentum or energy is used for tracking the particles and to determine their identity. For tracking the lateral extent of the ionization cloud should be known. For tracking and for charged particle identification (PID), one must understand that energy loss of particles, ionization and detector output are related, but not identical. In this paper, I discuss the relevant physics processes involved in PID and tracking and the stochastic nature of the energy loss mechanism. These calculations can be made with analytic and Monte Carlo methods. The expression dE/dx should be abandoned; it is never relevant to the signals in a particle-by-particle analysis. Specific terms such as energy loss, energy deposition, ionization and pulse height should be used instead. It is important that an accurate data analysis requires attention to track segmentation. I will show that properties of straggling functions for gases and thin silicon detectors are similar for equivalent absorber thicknesses and general conclusions given for one absorber will be valid for others. Thus, these techniques can be used in Time Projection Chambers (TPCs) and Silicon Drift Detectors. I will show how to use this formalism in the STAR and ALICE TPCs and describe how its use has improved the performance of the detector.

[1]  O. Blunck,et al.  Zum Energieverlust energiereicher Elektronen in dünnen Schichten , 1951 .

[2]  W. Borsch-Supan On the evaluation of the function phi(lambda)=1/2-pi-i-integral-sigma+i-infinity/sigma-i-infinity-eunin(+)-lambda-udu for real values of lambda , 1961 .

[3]  James A. R. Samson,et al.  Precision measurements of the total photoionization cross-sections of He, Ne, Ar, Kr, and Xe , 2002 .

[4]  E. Fermi Sulla teoria dell’ urto tra atomi e corpuscoli elettrici , 1925 .

[5]  J. Apostolakis,et al.  An implementation of ionisation energy loss in very thin absorbers for the GEANT4 simulation package , 2000 .

[6]  W. Love,et al.  The laser system for the STAR time projection chamber , 2003 .

[7]  S. Leisegang,et al.  Zum Energieverlust schneller Elektronen in dünnen Schichten , 1950 .

[8]  B. Marangelli,et al.  A new Monte Carlo code for full simulation of silicon strip detectors , 2004 .

[9]  J. W. Gallagher,et al.  Absolute Cross Sections for Molecular Photoabsorption, Partial Photoionization, and Ionic Photofragmentation Processes , 1987 .

[10]  Elliptic flow in Au+Au collisions at RHIC , 2004, nucl-ex/0410008.

[11]  Sigmund,et al.  Bethe stopping theory for a harmonic oscillator and Bohr's oscillator model of atomic stopping. , 1986, Physical review. A, General physics.

[12]  I. Lehraus,et al.  Particle identification by dE/dx sampling in high pressure drift detectors☆ , 1982 .

[13]  W. Allison,et al.  Relativistic Charged Particle Identification by Energy Loss , 1980 .

[14]  H. Bichsel,et al.  In-phantom microdosimetry with 14.6 MeV neutrons. , 1971, Health physics.

[15]  R. C. Alig Scattering by ionization and phonon emission in semiconductors. II. Monte Carlo calculations , 1983 .

[16]  J. Thomas,et al.  The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC , 2003, nucl-ex/0301015.

[17]  Mitio Inokuti,et al.  Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited , 1971 .

[18]  R. W. Fink,et al.  X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities , 1972 .

[19]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[20]  J. Va’vra Particle identification methods in high-energy physics , 2000 .

[21]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[22]  Bichsel Stopping power and ranges of fast ions in heavy elements. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  R. F. Peierls,et al.  General expression for the density effect for the ionization loss of charged particles , 1971 .

[24]  D. Combecher Measurement of W Values of Low-Energy Electrons in Several Gases , 1980 .

[25]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[26]  Robert P. Johnson,et al.  PERFORMANCE OF THE ALEPH TIME PROJECTION CHAMBER , 1991 .

[27]  Hans Bichsel,et al.  Straggling in thin silicon detectors , 1988 .

[28]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[29]  A. Rubach,et al.  Neutron dosimetry with spherical ionisation chambers. I. Theory of the dose conversion factors r and Wn , 1982 .

[30]  Taizo Sasaki,et al.  Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum , 1980 .

[31]  Robert Katz,et al.  Energy Deposition by Electron Beams and δ Rays , 1968 .

[32]  H. Bichsel Straggling and particle identification in silicon detectors , 1970 .

[33]  H. Bichsel,et al.  Comparison of calculational methods for straggling in thin absorbers , 1975 .

[34]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[35]  H. Bichsel Considerations concerning the straggling of 100-MeV protons in Xe , 1974 .

[36]  H. Bichsel Inelastic electronic collision cross sections for Monte Carlo calculations , 1990 .

[37]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[38]  H. Bichsel,et al.  Range of 6- to 18-Mev Protons in Be, Al, Cu, Ag, and Au , 1957 .

[39]  B. Rossi,et al.  High-Energy Particles , 1953 .

[40]  W. J. Meath,et al.  Stopping and straggling mean excitation energies, related properties, and their additivity, for the normal alkanes , 1983 .

[41]  H. Bichsel Straggling of Heavy Charged Particles: Comparison of Born Hydrogenic-Wave-Function Approximation with Free-Electron Approximation , 1970 .

[42]  R. K. Bull,et al.  Stopping powers for electrons and positrons: ICRU Report 37; 271 pp.; 24 figures; U.S. $24.00. , 1986 .

[43]  J. West,et al.  Absolute photoionization cross-section tables for helium, neon, argon, and krypton in the VUV spectral regions , 1976 .

[44]  G. Yodh,et al.  The experimental identification of individual particles by the observation of transition radiation in the X-ray region , 1973 .

[45]  H. Bichsel Shell corrections in stopping powers , 2002 .

[46]  E. J. Williams The Straggling of β -Particles , 1929 .

[47]  C. Tschalär,et al.  Straggling distributions of large energy losses , 1968 .

[48]  P. Christmas,et al.  Average energy required to produce an ion pair: ICRU Report 31, 1979, ICRU Publications, PO Box 30165, Washington, DC 20014, U.S.A. 52 pp. £5.25. , 1980 .

[49]  H. W. Lewis Straggling Effects on Resonant Yields , 1962 .

[50]  P. Siffert,et al.  Large Departures From Landau Distributions for High-energy Particles Traversing Thin Si and Ge Targets , 1987 .

[51]  A. Margarian,et al.  A Monte-Carlo method for calculation of the distribution of ionization losses , 1974 .

[52]  William H. Press,et al.  Numerical recipes , 1990 .

[53]  F. Piuz,et al.  Simulation of the measurement by primary cluster counting of the energy lost by a relativistic ionizing particle in argon , 1980 .

[54]  A. H. Walenta,et al.  Measurement of the ionization loss in the region of relativistic rise for noble and molecular gases , 1979 .

[55]  V. V. Belaga,et al.  STAR detector overview , 2003 .

[56]  R. D. Evans,et al.  Atomic Nucleus , 2020, Definitions.

[57]  I. Lehraus,et al.  Pressure Dependence of the Relativistic Rise in Neon and Highest Attainable Ionization Sampling Resolution in Neon, Argon, Ethylene and Propane , 1983, IEEE Transactions on Nuclear Science.

[59]  Hans Bichsel,et al.  Thoughts About Nanodosimetry , 2004 .

[60]  E. Fermi Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen , 1924 .

[61]  W. Blum,et al.  Particle detection with drift chambers , 1993 .

[62]  S. V. Starodubt͡sev,et al.  The passage of charged particles through matter , 1965 .

[63]  M. E. Rudd,et al.  Secondary electron spectra from charged particle interactions , 1996 .

[64]  R. Talman On the statistics of particle identification using ionization , 1979 .

[65]  G. Knoll Radiation detection and measurement , 1979 .

[66]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[67]  C. E. Brion,et al.  Absolute optical oscillator strengths (11–20 eV) and transition moments for the photoabsorption of molecular hydrogen in the Lyman and Werner bands , 1992 .

[68]  Jonathan A. Cooper,et al.  Spectral Distribution of Atomic Oscillator Strengths , 1968 .

[69]  D. Liljequist,et al.  A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids , 1983 .

[70]  Straggling of fast electrons in aluminum foils observed in high-voltage electron microscopy (0.3-1.2 MV) , 1977 .

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  A. Boardman,et al.  Excitation of Plasmons and Interband Transitions by Electrons. By Heinz Raether , 1981 .