Similarities and differences between statistical surveillance and certain decision rules in finance

Financial trading rules have the aim of continuously evaluating available information in order to make timely decisions. This is also the aim of methods for statistical surveillance. Many results are available regarding the properties of surveillance methods. We give a review of financial trading rules and use the theory of statistical surveillance to find properties of some commonly used trading rules. In addition, a nonparametric and robust surveillance method is proposed as a trading rule. Evaluation measures used in statistical surveillance are compared with those used in finance. The Hang Seng Index is used for illustration.

[1]  D. A. Hsu,et al.  A Bayesian Robust Detection of Shift in the Risk Structure of Stock Market Returns , 1982 .

[2]  SEQUENTIAL METHODS FOR DETECTING CHANGES IN THE VARIANCE OF ECONOMIC TIME SERIES , 2001 .

[3]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[4]  F. Black The pricing of commodity contracts , 1976 .

[5]  Technical Analysis and the London Stock Exchange : Testing Trading Rules Using the FT 30 , 1997 .

[6]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[7]  Ansgar Steland,et al.  Nonparametric monitoring of financial time series by jump-preserving control charts , 2002 .

[8]  Wolfgang Schmid,et al.  Statistical Process Control and its Application in Finance , 1998 .

[9]  Philip Hans Franses,et al.  Non-Linear Time Series Models in Empirical Finance , 2000 .

[10]  Christopher J. Neely,et al.  Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach , 1996, Journal of Financial and Quantitative Analysis.

[11]  David Bock,et al.  A review and discussion of prospective statistical surveillance in public health , 2003 .

[12]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[13]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[14]  M. Srivastava,et al.  Comparison of EWMA, CUSUM and Shiryayev-Roberts Procedures for Detecting a Shift in the Mean , 1993 .

[15]  M. Frisén Statistical surveillance of business cycles , 1994 .

[16]  Thomas H. McCurdy,et al.  Identifying Bull and Bear Markets in Stock Returns , 2000 .

[17]  Kin Lam,et al.  Cusum Techniques for Technical Trading in Financial Markets , 1997 .

[18]  John G. Powell,et al.  Detection of Financial Time Series Turning Points: A New CUSUM Approach Applied to IPO Cycles , 2001 .

[19]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[20]  Timo Teräsvirta,et al.  Modelling Economic Relationships with Smooth Transition Regressions , 1996 .

[21]  T. Lai Sequential changepoint detection in quality control and dynamical systems , 1995 .

[22]  R. Defina,et al.  Duration dependence in the US stock market cycle: a parametric approach , 1995 .

[23]  Richard M. Levich,et al.  The Significance of Technical Trading-Rule Profits in the Foreign Exchange Market: a Bootstrap Approach , 1991 .

[24]  Henrik Jönsson Monte Carlo Studies of American Type Call Options with Discrete Time , 2001 .

[25]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[26]  T. Holgersson Testing for non-normality in multivariate regression with nonspherical disturbances , 2002 .

[27]  W. Schmid,et al.  Statistical Surveillance of the Parameters of a One-Factor Cox–Ingersoll–Ross Model , 2004 .

[28]  I. Marsh,et al.  High‐frequency Markov switching models in the foreign exchange market , 2000 .

[29]  Gordon Leitch,et al.  Economic Forecast Evaluation: Profits versus the Conventional Error Measures , 1991 .

[30]  Fah Fatt Gan,et al.  Designs of One- and Two-Sided Exponential EWMA Charts , 1998 .

[31]  Albert N. Shiryaev,et al.  Toward the Theory of Pricing of Options of Both European and American Types. I. Discrete time , 1995 .

[32]  Thomas H. McCurdy,et al.  News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns , 2003 .

[33]  Emmanuel Yashchin,et al.  Monitoring Active Portfolios Using Statistical Process Control , 1997 .

[34]  R. Sweeney,et al.  Beating the Foreign Exchange Market , 1986 .

[35]  Marianne Frisén,et al.  Optimal Surveillance Based on Exponentially Weighted Moving Averages , 2006 .

[36]  Albert N. Shiryaev,et al.  Quickest Detection Problems in the Technical Analysis of the Financial Data , 2002 .

[37]  Lynn D. Torbeck,et al.  Statistical Process Control: Theory and Practice , 1992 .

[38]  Salih N Neftci,et al.  Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis." , 1991 .

[39]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[40]  A. Zellner,et al.  Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques , 1991 .

[41]  S Sidney,et al.  ALEXANDER, . Price Movements in Speculative Markets: Trends or Random Walks, No. 2. Industrial Management Review, , . , 1964 .

[42]  Christian Sonesson,et al.  Surveillance in Longitudinal Models: Detection of Intrauterine Growth Restriction , 2004, Biometrics.

[43]  Sven Knoth,et al.  Control Charts for Time Series , 1997 .

[44]  Wolfgang Schmid,et al.  Control charts for GARCH processes , 2001 .

[45]  Piotr Kokoszka,et al.  Monitoring changes in linear models , 2004 .

[46]  Wolfgang Schmid,et al.  Monitoring the cross-covariances of a multivariate time series , 2005 .

[47]  Geoffrey H. Moore,et al.  Using economic indicators to reduce risk in stock market investments , 1994 .

[48]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[49]  M. Petzold,et al.  Detection of intra-uterine growth restriction , 2003 .

[50]  Ronald D. Fricker,et al.  Detecting When a Monotonically Increasing Mean Has Crossed a Threshold , 1999 .

[51]  Ruey S. Tsay,et al.  A nonlinear autoregressive conditional duration model with applications to financial transaction data , 2001 .

[52]  R. Engle,et al.  Time and the Price Impact of a Trade , 1999 .

[53]  E. Andersson,et al.  On seasonal filters and monotonicity , 2001 .

[54]  Christian Sonesson,et al.  Evaluations of some Exponentially Weighted Moving Average methods , 2003 .

[55]  Tomasz Bojdecki Probability maximizing approach to optimal stopping and its application to a disorder problem , 1980 .

[56]  Magnus Pettersson Evaluation of some methods for statistical surveillance of an autoregressive process , 1998 .

[57]  S Sidney,et al.  ALEXANDER, . Price Movements in Speculative Markets: Trends or Random Review, , . , 1961 .

[58]  F. Gan Cusum Control Charts Under Linear Drift , 1992 .

[59]  P. Wessman,et al.  Some principles for surveillance adopted for multivariate processes with a common change point , 1998 .

[60]  Chris Brooks,et al.  A trading strategy based on the lead–lag relationship between the spot index and futures contract for the FTSE 100 , 2001 .

[61]  G. Barrie Wetherill,et al.  Statistical Process Control , 1991 .

[62]  A. Shiryaev Essentials of stochastic finance , 1999 .

[63]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[64]  Lasse Koskinen,et al.  A classifying procedure for signalling turning points , 2004 .

[65]  David Bock,et al.  Consequences of using the probability of a false alarm as the false alarm measure , 2007 .

[66]  Tze Leung Lai,et al.  Optimal stopping for Brownian motion with applications to sequential analysis and option pricing , 2003 .

[67]  K. Lahiri,et al.  Interest Rate Spreads as Predictors of German Inflation and Business Cycles , 1999 .

[68]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[69]  M Frisén,et al.  Evaluations of methods for statistical surveillance. , 1992, Statistics in medicine.

[70]  Andrew W. Lo,et al.  Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation , 2000 .

[71]  A new turning point signalling system using the Markov switching model with application to Japan, the USA and Australia , 2001 .

[72]  Stephen B. Vardeman,et al.  Average Run Lengths for CUSUM Schemes When Observations Are Exponentially Distributed , 1985 .

[73]  Kajal Lahiri,et al.  Interest Rate Spreads as Predictors of German Inflation and Business Cycles , 1999 .

[74]  Stephen L Taylor Conjectured models for trends in financial prices, tests and forecasts , 1980 .

[75]  Christopher J. Neely Technical analysis in the foreign exchange market: a layman's guide , 1997 .

[76]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[77]  A. Steland Optimal sequential kernel detection for dependent processes , 2005, 1001.1830.

[78]  Arjun K. Gupta,et al.  Testing and Locating Variance Changepoints with Application to Stock Prices , 1997 .

[79]  Wallace N. Davidson,et al.  Filter Tests in Nasdaq Stocks , 1998 .

[80]  R. Sweeney,et al.  Some New Filter Rule Tests: Methods and Results , 1988, Journal of Financial and Quantitative Analysis.

[81]  Fah Fatt Gan,et al.  A CUMULATIVE SUM CONTROL CHART FOR MONITORING PROCESS VARIANCE , 1995 .

[82]  E. Andersson,et al.  Effect of Dependency in Systems for Multivariate Surveillance , 2009, Commun. Stat. Simul. Comput..

[83]  Marianne Frisén,et al.  Statistical Surveillance. Optimality and Methods , 2003 .

[84]  W. Schmid,et al.  On the run length of the EWMA scheme: a monotonicity result for normal variables , 1999 .

[85]  Hans Dewachter,et al.  Can Markov switching models replicate chartist profits in the foreign exchange market , 2001 .

[86]  Allan P. Layton,et al.  Dating and predicting phase changes in the U.S. business cycle , 1996 .

[87]  Turning point detection using non-parametric statistical surveillance , 2001 .

[88]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[89]  P. Robinson,et al.  Average Run Lengths of Geometric Moving Average Charts by Numerical Methods , 1978 .

[90]  Forecasting and trading strategies based on a price trend model , 2000 .

[91]  Christopher J. Neely,et al.  Intraday Technical Trading in the Foreign Exchange Market , 1999 .

[92]  J. Sheil,et al.  An approach to controlling process variability , 1989 .

[93]  David Bock,et al.  Statistical surveillance of cyclical processes with application to turns in business cycles , 2005 .

[94]  Dean W. Wichern,et al.  Changes of Variance in First-Order Autoregressive Time Series Models -With an Application , 1976 .

[95]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[96]  M. Frisén,et al.  Some statistical aspects of methods for detection of turning points in business cycles , 2006 .

[97]  Terence C. Mills,et al.  Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30 , 1997 .

[98]  H. R. Lerche,et al.  A New Look at Optimal Stopping Problems related to Mathematical Finance , 1997 .

[99]  Eva Andersson,et al.  Modeling influenza incidence for the purpose of on-line monitoring , 2007, Statistical methods in medical research.

[100]  G. H. Moore,et al.  Financial market forecasts and rates of return based on leading index signals , 1991 .

[101]  Tina Hviid Rydberg,et al.  BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time , 2000 .

[102]  Panayiotis Theodossiou Predicting Shifts in the Mean of a Multivariate Time Series Process: An Application in Predicting Business Failures , 1993 .

[103]  A. Rukhin Asymptotic behavior of posterior distribution of the change-point parameter , 2002 .

[104]  A. Kukush,et al.  Threshold Structure of Optimal Stopping Strategies for American Type Option. I , 2006 .

[105]  Thanasis Stengos,et al.  Technical Trading Rules and the Size of the Risk Premium in Security Returns , 1997 .

[106]  Marianne Frisén,et al.  Evaluations of likelihood ratio methods for surveillance. Differences and robustness , 1999 .

[107]  E. Fama,et al.  Filter Rules and Stock-Market Trading , 1966 .

[108]  Boris Darkhovsky,et al.  Asymptotically optimal methods of change-point detection for composite hypotheses , 2005 .

[109]  Eva Andersson,et al.  Monitoring cyclical processes. A non-parametric approach , 2002 .

[110]  Emmanuel Yashchin,et al.  Using Statistical Process Control to Monitor Active Managers , 2003 .

[111]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[112]  H. Dewachter Sign predictions of exchange rate changes: Charts as proxies for Bayesian inferences , 1997 .

[113]  Is the ‘Perfect’ Timing Strategy Truly Perfect? , 2004 .

[114]  Grant R. Mcqueen,et al.  Bubbles, Stock Returns, and Duration Dependence , 1994, Journal of Financial and Quantitative Analysis.

[115]  Eva Andersson,et al.  Detection of Turning Points in Business Cycles , 2003 .

[116]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[117]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[118]  Maureen O'Hara,et al.  Market Microstructure Theory , 1995 .

[119]  Timo Teräsvirta,et al.  Smooth transition autoregressive models - A survey of recent developments , 2000 .