Bayesian estimation for the local assessment of the multifractality parameter of multivariate time series
暂无分享,去创建一个
Jean-Yves Tourneret | Patrice Abry | Stephen McLaughlin | Yoann Altmann | Herwig Wendt | Sébastien Combrexelle
[1] Jean-Yves Tourneret,et al. Bayesian estimation for the multifractality parameter , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] Yves Gagne,et al. Log-similarity for turbulent flows? , 1993 .
[4] Ali Taylan Cemgil,et al. Gamma Markov Random Fields for Audio Source Modeling , 2009, IEEE Transactions on Audio, Speech, and Language Processing.
[5] B. Mandelbrot. A Multifractal Walk down Wall Street , 1999 .
[6] Jean-Yves Tourneret,et al. Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation , 2014, IEEE Transactions on Image Processing.
[7] Jean-Yves Tourneret,et al. A Bayesian framework for the multifractal analysis of images using data augmentation and a whittle approximation , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[8] Thomas Lux,et al. The Markov-Switching Multifractal Model of Asset Returns , 2008 .
[9] S. Mallat. A wavelet tour of signal processing , 1998 .
[10] Jean-Yves Tourneret,et al. A Bayesian approach for the joint estimation of the multifractality parameter and integral scale based on the Whittle approximation , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[11] S. Jaffard,et al. Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis , 2012, 1210.0482.
[12] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[13] E. Bacry,et al. Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[15] O Løvsletten,et al. Approximated maximum likelihood estimation in multifractal random walks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[17] 24th European Signal Processing Conference, EUSIPCO 2016, Budapest, Hungary, August 29 - September 2, 2016 , 2016, European Signal Processing Conference.
[18] P. Abry,et al. Bootstrap for Empirical Multifractal Analysis , 2007, IEEE Signal Processing Magazine.