Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness

Natural Science Foundation of China [20433040, 26673086]; Ministry of Science and Technology [2007CB815303, 22007CB935603]

[1]  Y. Gogotsi,et al.  SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles , 2008 .

[2]  Jürgen Popp,et al.  SERS: a versatile tool in chemical and biochemical diagnostics , 2008, Analytical and bioanalytical chemistry.

[3]  Younan Xia,et al.  Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. , 2007, Journal of the American Chemical Society.

[4]  R. Álvarez-Puebla,et al.  SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. , 2007, The Analyst.

[5]  Martin Moskovits,et al.  Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. , 2007, Journal of the American Chemical Society.

[6]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[7]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[8]  M. Pileni Control of the Size and Shape of Inorganic Nanocrystals at Various Scales from Nano to Macrodomains , 2007 .

[9]  Yuxiong Jiang,et al.  Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[10]  Luis M Liz-Marzán,et al.  Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[12]  J. Kneipp Nanosensors Based on SERS for Applications in Living Cells , 2006 .

[13]  M. Natan,et al.  Surface enhanced Raman scattering. , 2006, Faraday discussions.

[14]  Katrin Kneipp,et al.  Surface-enhanced Raman scattering , 2006 .

[15]  M. Moskovits,et al.  Surface-enhanced raman scattering : physics and applications , 2006 .

[16]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[17]  Joseph M. McLellan,et al.  Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. , 2005, Journal of the American Chemical Society.

[18]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[19]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[20]  De‐Yin Wu,et al.  Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces , 2005 .

[21]  Zhong-Qun Tian,et al.  Surface-enhanced Raman spectroscopy: advancements and applications , 2005 .

[22]  J. Solla-Gullón,et al.  Nanoparticles-on-electrode approach forin situ surface-enhanced Raman spectroscopy studies with platinum-group metals: examples and prospects , 2005 .

[23]  M. Pileni,et al.  Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects , 2004 .

[24]  V. Montiel,et al.  In Situ Surface Enhanced Raman Spectroscopy on Electrodes with Platinum and Palladium Nanoparticle Ensembles , 2004 .

[25]  Zhong-Qun Tian,et al.  Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. , 2004, Annual review of physical chemistry.

[26]  Y. Ozaki,et al.  Self-assembled metal colloid films: two approaches for preparing new SERS active substrates. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[27]  Yuxiong Jiang,et al.  Optimizing Detection Sensitivity on Surface-Enhanced Raman Scattering of Transition-Metal Electrodes with Confocal Raman Microscopy , 2003, Applied spectroscopy.

[28]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[29]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[30]  D. Kolb,et al.  The potentials of zero charge of Pd(111) and thin Pd overlayers on Au(111) , 2002 .

[31]  A. Wei,et al.  Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[33]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[34]  Catherine J. Murphy,et al.  Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles , 2001 .

[35]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[36]  A. Henglein Reduction of Ag(CN)2- on Silver and Platinum Colloidal Nanoparticles , 2001 .

[37]  A. Henglein Preparation and Optical Aborption Spectra of AucorePtshelland PtcoreAushellColloidal Nanoparticles in Aqueous Solution , 2000 .

[38]  A. Henglein Preparation and Optical Aborption Spectra of AucorePtshell and PtcoreAushell Colloidal Nanoparticles in Aqueous Solution , 2000 .

[39]  M. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films , 2000 .

[40]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[41]  Shuming Nie,et al.  Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals , 1999 .

[42]  R. G. Freeman,et al.  Size selection of colloidal gold aggregates by filtration: effect on surface‐enhanced Raman scattering intensities , 1999 .

[43]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[44]  Keith T. Carron,et al.  Determination of the Distance Dependence and Experimental Effects for Modified SERS Substrates Based on Self-Assembled Monolayers Formed Using Alkanethiols , 1999 .

[45]  Michael J. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces , 1998 .

[46]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[47]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[48]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[49]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[50]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[51]  A. Otto Surface enhanced Raman scattering , 1983 .

[52]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[53]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .