High damage tolerance of electrochemically lithiated silicon

[1]  S. Xia,et al.  Atomic-scale mechanisms of sliding along an interdiffused Li-Si-Cu interface. , 2015, Nano letters.

[2]  Zhigang Suo,et al.  Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries , 2014 .

[3]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[4]  Yi Cui,et al.  Robustness of amorphous silicon during the initial lithiation/delithiation cycle , 2014 .

[5]  L. S Etube,et al.  Fracture Mechanics Analysis , 2014 .

[6]  Oliver Kraft,et al.  In situ tensile and creep testing of lithiated silicon nanowires , 2013 .

[7]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[8]  A. V. van Duin,et al.  Mechanical properties of amorphous LixSi alloys: a reactive force field study , 2013 .

[9]  A. Bower,et al.  On Plastic Deformation and Fracture in Si Films during Electrochemical Lithiation/Delithiation Cycling , 2013, 1309.2016.

[10]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[11]  Ting Zhu,et al.  Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries , 2013 .

[12]  G. Hwang,et al.  Surface effects on the structure and lithium behavior in lithiated silicon: A first principles study , 2013 .

[13]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[14]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[15]  Justin T. Harris,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[16]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[17]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[18]  A. Kushima,et al.  Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. , 2012, ACS nano.

[19]  Huajian Gao,et al.  Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands , 2012 .

[20]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[21]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[22]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[23]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[24]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[25]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[26]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[27]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[28]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[29]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[30]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[31]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[32]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[33]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[34]  Robert F. Cook,et al.  Strength and sharp contact fracture of silicon , 2006 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[37]  Liquan Chen,et al.  A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. , 2000 .

[38]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[39]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[40]  Yi Cui,et al.  Mechanical behavior of electrochemically lithiated silicon , 2015 .

[41]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[42]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[43]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[44]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .