A Newton-like method for solving rank constrained linear matrix inequalities
暂无分享,去创建一个
John B. Moore | Uwe Helmke | Robert Orsi | John B. Moore | U. Helmke | R. Orsi | J. Moore
[1] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[2] Takao Watanabe,et al. A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..
[3] P. Apkarian,et al. Fixed‐order H∞ control design via a partially augmented Lagrangian method , 2003 .
[4] M. Tomizuka,et al. Rank minimization approach for solving BMI problems with random search , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[5] Pierre Apkarian,et al. Robust control via sequential semidefinite programming , 2001, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[6] Pierre Apkarian,et al. An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[7] Friedemann Leibfritz,et al. An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..
[8] K. Grigoriadis,et al. Alternating projection algorithms for linear matrix inequalities problems with rank constraints , 1999 .
[9] G. Papavassilopoulos,et al. Bilinearity and complementarity in robust control , 1999 .
[10] Laurent El Ghaoui,et al. Advances in linear matrix inequality methods in control: advances in design and control , 1999 .
[11] Tetsuya Iwasaki,et al. The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..
[12] Moody T. Chu,et al. Inverse Eigenvalue Problems , 1998, SIAM Rev..
[13] Gábor Pataki,et al. On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..
[14] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[15] M. Trosset. Computing Distances Between Convex Sets and Subsets of the Positive Semidefinite Matrices , 1997 .
[16] K. Goh,et al. Robust synthesis via bilinear matrix inequalities , 1996 .
[17] L. Ghaoui,et al. A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.
[18] Karolos M. Grigoriadis,et al. Low-order control design for LMI problems using alternating projection methods , 1996, Autom..
[19] K. Grigoriadis,et al. A Combined Alternating Projections and Semidefinite Programming Algorithm for Low-Order Control Design , 1996 .
[20] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[21] B. De Moor,et al. The opposite of analytic centering for solving minimum rank problems in control and identification , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[22] M. Chu. Numerical methods for inverse singular value problems3 , 1992 .
[23] N. Higham. COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .
[24] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[25] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[26] Alexander I. Barvinok,et al. A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints , 2001, Discret. Comput. Geom..
[27] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[28] Mehran Mesbahil,et al. On the semi-definite programming solution of the least order dynamic output feedback synthesis , 1999 .
[29] Stephen P. Boyd,et al. Semidefinite Programming Relaxations of Non-Convex Problems in Control and Combinatorial Optimization , 1997 .
[30] Charles D. Schaper,et al. Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath , 1997 .
[31] B. De Moor,et al. Designing reduced order output feedback controllers using a potential reduction method , 1994, Proceedings of 1994 American Control Conference - ACC '94.
[32] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[33] M. Chu. Numerical Methods for Inverse Singular Value Problems , 1992 .
[34] Christopher I. Byrnes,et al. Analysis and control of nonlinear systems , 1988 .
[35] K. Mardia. Some properties of clasical multi-dimesional scaling , 1978 .
[36] D. Luenberger. Optimization by Vector Space Methods , 1968 .