On error bound moduli for locally Lipschitz and regular functions

In this paper we study local error bound moduli for a locally Lipschitz and regular function via outer limiting subdifferential sets. We show that the distance from 0 to the outer limiting subdifferential of the support function of the subdifferential set, which is essentially the distance from 0 to the end set of the subdifferential set, is an upper estimate of the local error bound modulus. This upper estimate becomes tight for a convex function under some regularity conditions. We show that the distance from 0 to the outer limiting subdifferential set of a lower $${\mathcal {C}}^1$$C1 function is equal to the local error bound modulus.

[1]  Xiaoqi Yang,et al.  On Local Coincidence of a Convex Set and its Tangent Cone , 2015, J. Optim. Theory Appl..

[2]  Vera Roshchina,et al.  Outer limits of subdifferentials for min–max type functions , 2017, 1701.02852.

[3]  K. W. Meng,et al.  Equivalent Conditions for Local Error Bounds , 2012 .

[4]  Bernd Kummer,et al.  Inclusions in general spaces: Hoelder stability, solution schemes and Ekeland's principle , 2009 .

[5]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[6]  Qing Wang,et al.  Closedness of a Convex Cone and Application by Means of the End Set of a Convex Set , 2011, J. Optim. Theory Appl..

[7]  Asen L. Dontchev,et al.  Regularity and Conditioning of Solution Mappings in Variational Analysis , 2004 .

[8]  Marco A. López,et al.  Locally polyhedral linear inequality systems , 1998 .

[9]  A. M. Rubinov Radiant Sets and Their Gauges , 2000 .

[10]  Marcin Studniarski,et al.  Weak Sharp Minima: Characterizations and Sufficient Conditions , 1999, SIAM J. Control. Optim..

[11]  Xiaoqi Yang,et al.  Weak Sharp Minima for Semi-infinite Optimization Problems with Applications , 2007, SIAM J. Optim..

[12]  Xi Yin Zheng,et al.  Error Bounds for Lower Semicontinuous Functions in Normed Spaces , 2001, SIAM J. Optim..

[13]  J. Martínez-Legaz,et al.  Generalized Convexity, Generalized Monotonicity: Recent Results , 2011 .

[14]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[15]  Hui Hu Characterizations of Local and Global Error Bounds for Convex Inequalities in Banach Spaces , 2007, SIAM J. Optim..

[16]  Wu Li,et al.  Abadie's Constraint Qualification, Metric Regularity, and Error Bounds for Differentiable Convex Inequalities , 1997, SIAM J. Optim..

[17]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[18]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[19]  A. Ioffe,et al.  METRIC REGULARITY—A SURVEY PART 1. THEORY , 2016, Journal of the Australian Mathematical Society.

[20]  A. Kruger,et al.  Error Bounds: Necessary and Sufficient Conditions , 2010 .

[21]  Xi Yin Zheng,et al.  Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces , 2007, SIAM J. Optim..

[22]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[23]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[24]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 1: A Reduction Theorem and First Order Conditions , 1979 .

[25]  René Henrion,et al.  Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming , 2015, J. Optim. Theory Appl..

[26]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..

[27]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[28]  M. J. Cánovas,et al.  Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .

[29]  Hui Hu,et al.  Characterizations of the Strong Basic Constraint Qualifications , 2005, Math. Oper. Res..

[30]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..