A priori error analysis of two force-based atomistic/continuum models of a periodic chain

The force-based quasicontinuum (QCF) approximation is a non-conservative atomistic/continuum hybrid model for the simulation of defects in crystals. We present an a priori error analysis of the QCF method, applied to a one-dimensional periodic chain, that is valid for an arbitrary interaction range, large deformations, and takes coarse-graining into account. Our main tool in this analysis is a new concept of atomistic stress. Moreover, we formulate a new atomistic/continuum coupling mechanism based on coupling stresses instead of forces and extend the a priori analysis to this new method. We show that the new method has several theoretical advantages over the original QCF method.

[1]  Hao Wang,et al.  A Posteriori Error Estimates for Energy-Based Quasicontinuum Approximations of a Periodic Chain , 2011, 1112.5480.

[2]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .

[3]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation , 2010, Multiscale Model. Simul..

[4]  Xingjie Helen Li,et al.  A Generalized Quasi-Nonlocal Atomistic-to-Continuum Coupling Method with Finite Range Interaction , 2010 .

[5]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[6]  Christoph Ortner,et al.  Iterative Methods for the Force-based Quasicontinuum Approximation , 2009 .

[7]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[8]  Alexander V. Shapeev,et al.  The Spectrum of the Force-Based Quasicontinuum Operator for a Homogeneous Periodic Chain , 2010, Multiscale Model. Simul..

[9]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[10]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[11]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[12]  Pavel B. Bochev,et al.  Connecting Atomistic-to-Continuum Coupling and Domain Decomposition , 2008, Multiscale Model. Simul..

[13]  Siegfried Schmauder,et al.  A New Method for Coupled Elastic-Atomistic Modelling , 1989 .

[14]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[15]  G. Ackland,et al.  Atomistic simulation of materials : beyond pair potentials , 1989 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  E Weinan,et al.  Analysis of the Local Quasicontinuum Method , 2006 .

[18]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[19]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[20]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[21]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[22]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[23]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[24]  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case , 2010 .

[25]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[26]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[27]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[28]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[29]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[30]  Christoph Ortner,et al.  Analysis of the quasicontinuum method , 2006 .

[31]  Endre Süli,et al.  Stress-based atomistic/continuum coupling : a new variant of the quasicontinuum approximation , 2011 .

[32]  A. A. Samarskii,et al.  Homogeneous difference schemes , 1962 .

[33]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[34]  Michael Plum,et al.  Computer-assisted enclosure methods for elliptic differential equations , 2001 .