The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells.

[1]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[2]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[3]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[4]  Jenny Clark,et al.  Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers , 2006 .

[5]  Paul A. van Hal,et al.  Photoinduced electron transfer from conjugated polymers to TiO2 , 1999 .

[6]  R. Friend,et al.  Anisotropic optical properties in electroluminescent conjugated polymers based on grazing angle photoluminescence measurements. , 2006, The Journal of chemical physics.

[7]  F. Spano,et al.  Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. , 2005, The Journal of chemical physics.

[8]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[9]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[10]  M. Shim,et al.  Organic-capped ZnO nanocrystals: synthesis and n-type character. , 2001, Journal of the American Chemical Society.

[11]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[12]  T. Nishi,et al.  Emerging Technologies for the 3D Analysis of Polymer Structures , 2004 .

[13]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[14]  S. Shaheen,et al.  The Effect of Atmosphere and ZnO Morphology on the Performance of Hybrid Poly(3-hexylthiophene)/ZnO Nanofiber Photovoltaic Devices , 2007 .

[15]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[16]  S. Shaheen,et al.  The Locus of Free Charge-Carrier Generation in Solution-Cast Zn1–xMgxO/Poly(3-hexylthiophene) Bilayers for Photovoltaic Applications† , 2007 .

[17]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[18]  Paul W. M. Blom,et al.  Migration-assisted energy transfer at conjugated polymer/metal interfaces , 2005 .

[19]  Richard H. Friend,et al.  Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers , 1997 .

[20]  P. Blom,et al.  Hybrid polymer solar cells from highly reactive diethylzinc , 2007 .

[21]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[22]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[23]  N. Greenham,et al.  Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. , 2006, Nano letters.

[24]  Xiaoniu Yang,et al.  Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices , 2004 .

[25]  Bin Liu,et al.  Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye , 2009 .

[26]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[27]  Chie Gau,et al.  Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer , 2008 .

[28]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .

[29]  Mm Martijn Wienk,et al.  Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer , 2005 .