Trees, tight-spans and point configurations
暂无分享,去创建一个
[1] Katharina T. Huber,et al. Basic Phylogenetic Combinatorics , 2011 .
[2] Peter Winkler,et al. Building Graphs from Colored Trees , 2010, Electron. J. Comb..
[3] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[4] Vincent Moulton,et al. The split decomposition of a k-dissimilarity map , 2010, Adv. Appl. Math..
[5] P. Tupper,et al. Hyperconvexity and tight-span theory for diversities , 2010, 1006.1095.
[6] David BryantPaul,et al. The Tight Span of a Diversity: Hyperconvexity and injective envelopes for a natural class of multi-way metrics , 2010 .
[7] Hiroshi Hirai,et al. On tight spans and tropical polytopes for directed distances , 2010, 1004.0415.
[8] Katharina T. Huber,et al. An Algorithm for Computing Cutpoints in Finite Metric Spaces , 2009, J. Classif..
[9] Sven Herrmann,et al. On the facets of the secondary polytope , 2009, J. Comb. Theory, Ser. A.
[10] Sven Herrmann. Splits and tight spans of convex polytopes , 2009 .
[11] Sven Herrmann,et al. Splitting Polytopes , 2008, 0805.0774.
[12] Hiroshi Hirai,et al. A Geometric Study of the Split Decomposition , 2006, Discret. Comput. Geom..
[13] H. Hirai. Characterization of the Distance between Subtrees of a Tree by the Associated Tight Span , 2006 .
[14] Katharina T. Huber,et al. Hereditarily Optimal Realizations of Consistent Metrics , 2006 .
[15] C. Krattenthaler,et al. On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching , 2005, Electron. J. Comb..
[16] B. Sturmfels,et al. Classification of Six-Point Metrics , 2004, Electron. J. Comb..
[17] B. Sturmfels,et al. Tropical convexity , 2003, Documenta Mathematica.
[18] M. Steel,et al. Tree Representations of Non-symmetric Group-Valued Proximities , 1999 .
[19] Marek Chrobak,et al. Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.
[20] A. Dress,et al. A canonical decomposition theory for metrics on a finite set , 1992 .
[21] Marek Chrobak,et al. A New Approach to the Server Problem , 1991, SIAM J. Discret. Math..
[22] J. Sanders,et al. The Stanley decomposition of the harmonic oscillator , 1988 .
[23] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[24] S. Hakimi,et al. The distance matrix of a graph and its tree realization , 1972 .
[25] J. Isbell. Six theorems about injective metric spaces , 1964 .
[26] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[27] Bernd Sturmfels,et al. Erratum for "Tropical Convexity" , 2004 .
[28] A. Ndreas,et al. T -theory : An Overview , 1996 .
[29] S. Gähler. Untersuchungen über verallgemeinerte m-metrische Räume. III† , 1969 .