Prony, Pad\'e, and Linear Prediction for Interpolation and Approximation in the Time and Frequency Domain Design of IIR Digital Filters and in Parameter Identification

Model based signal processing or signal analysis or signal representation has a rather different point of view from the more traditional filtering and algorithm based approaches. However, in all of these, the names of Prony, Pade, and linear prediction come up. This note examines these ideas with the goal of showing they are all based on the same principles and all can be extended and generalized. A particular application is the frequency sampling design of IIR digital filters.

[1]  Leonard Weiss,et al.  Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .

[2]  M. Lang,et al.  Weighted least squares IIR filter design with arbitrary magnitude and phase responses and specified stability margin , 1998, 1998 IEEE Symposium on Advances in Digital Filtering and Signal Processing. Symposium Proceedings (Cat. No.98EX185).

[3]  Raj Mittra,et al.  A technique for extracting the poles and residues of a system directly from its transient response , 1975 .

[4]  Adhemar Bultheel,et al.  Rational Approximation in Systems Engineering , 1983 .

[5]  Kenneth Steiglitz,et al.  Time-Domain Approximation by Iterative Methods , 1966 .

[6]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[7]  C. Sidney Burrus,et al.  On the design of L/sub p/ IIR filters with arbitrary frequency response , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[8]  A. W. Soewito,et al.  Least square digital filter design in the frequency domain , 1991 .

[9]  E. Cheney Introduction to approximation theory , 1966 .

[10]  J. Cadzow,et al.  Signal processing via least squares error modeling , 1990, IEEE ASSP Magazine.

[11]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .

[12]  Yong Ching Lim,et al.  A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design , 1992, IEEE Trans. Signal Process..

[13]  Leland B. Jackson Frequency-domain Steiglitz-McBride method for least-squares IIR filter design, ARMA modeling, and periodogram smoothing , 2008, IEEE Signal Processing Letters.

[14]  F. Brophy,et al.  Recursive digital filter synthesis in the time domain , 1974 .

[15]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[16]  S. Thomas Alexander,et al.  A relationship between the recursive least squares update and homotopy continuation methods , 1991, IEEE Trans. Signal Process..

[17]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[18]  G. Jullien,et al.  Computational techniques for least-square design of recursive digital filters , 1978 .

[19]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[20]  S. T. Alexander,et al.  Global optimal IIR filter design and ARMA estimation using homotopy continuation methods , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[21]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[22]  J. Shanks RECURSION FILTERS FOR DIGITAL PROCESSING , 1967 .

[23]  Ashraf Alkhairy An efficient method for IIR filter design , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  Leland B. Jackson An improved Martinet/Parks algorithm for IIR design with unequal numbers of poles and zeros , 1994, IEEE Trans. Signal Process..

[25]  T. Svensson An approximation method for time domain synthesis of linear networks , 1973 .

[26]  W. Huggins,et al.  Best least-squares representation of signals by exponentials , 1968 .

[27]  T. Saramaki Design of optimum recursive digital filters with zeros on the unit circle , 1983 .

[28]  Mathias C. Lang,et al.  Least-squares design of IIR filters with prescribed magnitude and phase responses and a pole radius constraint , 2000, IEEE Trans. Signal Process..

[29]  C. Burrus,et al.  The direct design of recursive or IIR digital filters , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[30]  C. Sidney Burrus,et al.  Adaptive iterative reweighted least squares design of L/sub p/ FIR filters , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[31]  G. Mian,et al.  A note on the design of IIR filters by the differential-correction algorithm , 1983 .

[32]  V. Jain,et al.  Representation of sequences , 1971 .

[33]  A. Deczky Synthesis of recursive digital filters using the minimum p-error criterion , 1972 .

[34]  T. Parks,et al.  Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle , 1978 .

[35]  Toshinori Yoshikawa,et al.  Complex Chebyshev approximation for IIR digital filters , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[36]  John E. Markel,et al.  Linear Prediction of Speech , 1976, Communication and Cybernetics.

[37]  V. Klema LINPACK user's guide , 1980 .

[38]  M. Fahmy,et al.  l_p^m approximation by exponentials , 1973 .

[39]  E. Schulz Estimation of pulse transfer function parameters by quasilinearization , 1968 .

[40]  Andrzej Tarczynski,et al.  A WISE method for designing IIR filters , 2001, IEEE Trans. Signal Process..

[41]  Takao Kobayashi,et al.  Design of IIR digital filters with arbitrary log magnitude function by WLS techniques , 1990, IEEE Trans. Acoust. Speech Signal Process..

[42]  J. Cadzow Recursive digital filter synthesis via gradient based algorithms , 1976 .

[43]  L. Rabiner,et al.  Linear programming design of IIR digital filters with arbitrary magnitude function , 1974 .

[44]  K. Steiglitz Computer-aided design of recursive digital filters , 1970 .

[45]  Gilbert Strang LINEAR ALGEBRA and Learning from Data First Edition MANUAL FOR INSTRUCTORS , 2019 .

[46]  D. C. Handscomb,et al.  Methods of Numerical Approximation , 1967 .

[47]  Kwong-Shu Chao,et al.  On sequential refinement schemes for recursive digital filter design , 1973 .

[48]  L. Jackson,et al.  A simple Remez exchange algorithm to design IIR filters with zeros on the unit circle , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[49]  Annie Cuyt,et al.  Nonlinear Methods in Numerical Analysis , 1987 .

[50]  C S Burrus,et al.  A digital parameter-identification technique applied to biological signals. , 1971, IEEE transactions on bio-medical engineering.

[51]  W. Rheinboldt,et al.  Pathways to Solutions, Fixed Points, and Equilibria. , 1983 .

[52]  F. Brophy,et al.  Considerations of the Padé approximant technique in the synthesis of recursive digital filters , 1973 .

[53]  Ricardo Arturo Vargas Iterative design of lp digital filters , 2008 .

[54]  G. Berchin,et al.  Precise Filter Design [DSP Tips & Tricks] , 2007, IEEE Signal Processing Magazine.

[55]  C. Sidney Burrus,et al.  Iterative Design of L_p Digital Filters , 2012, ArXiv.

[56]  Kelley Hall Fitting a Pole-Zero Filter Model to Arbitrary Frequency Response Samples , 1991 .

[57]  H. Fan,et al.  On 'global convergence' of Steiglitz-McBride adaptive algorithm , 1993 .

[58]  J. Markel Digital inverse filtering-a new tool for formant trajectory estimation , 1972 .

[59]  G. Miller,et al.  Least-squares rational Z-transform approximation , 1973 .

[60]  Arnab K. Shaw Optimal design of digital IIR filters by model-fitting frequency response data , 1993, ISCAS.

[61]  D. Dudgeon,et al.  Recursive filter design using differential correction , 1974 .

[62]  Mathias C. Lang Least squares design of IIR filters with arbitrary magnitude and phase responses and specified stability margin , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[63]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[64]  T. W. Parks,et al.  Digital Filter Design , 1987 .

[65]  L. Jackson Digital filters and signal processing , 1985 .

[66]  A. Evans,et al.  Optimal least squares time-domain synthesis of recursive digital filters , 1973 .

[67]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[68]  Inder Pal Singh Madan Time-Domain Design of Recursive Digital Filters , 1972 .