A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods

Krylov subspace methods are a popular class of iterative methods for solving linear systems with large, sparse matrices. On modern computer architectures, both sequential and parallel performance of classical Krylov methods is limited by costly data movement, or communication, required to update the approximate solution in each iteration. These motivated communication-avoiding Krylov methods, based on $s$-step formulations, reduce data movement by a factor of $O(s)$ by reordering the computations in classical Krylov methods to exploit locality. Studies on the finite precision behavior of communication-avoiding Krylov methods in the literature have thus far been empirical in nature; in this work, we provide the first quantitative analysis of the maximum attainable accuracy of communication-avoiding Krylov subspace methods in finite precision. Following the analysis for classical Krylov methods, we derive a bound on the deviation of the true and updated residuals in communication-avoiding conjugate gradient...

[1]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[2]  J. Demmel,et al.  Avoiding Communication in Computing Krylov Subspaces , 2007 .

[3]  Graham F. Carey,et al.  Parallelizable Restarted Iterative Methods for Nonsymmetric Linear Systems , 1991, PPSC.

[4]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[5]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[6]  Dennis Gannon,et al.  On the Impact of Communication Complexity on the Design of Parallel Numerical Algorithms , 1984, IEEE Transactions on Computers.

[7]  James Demmel,et al.  Avoiding Communication in Two-Sided Krylov Subspace Methods , 2011 .

[8]  James Demmel,et al.  Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[9]  A. Greenbaum Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..

[10]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[11]  Anthony T. Chronopoulos,et al.  On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..

[12]  Qiang Ye,et al.  Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..

[13]  Gerard L. G. Sleijpen,et al.  Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.

[14]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[15]  H. Walker,et al.  Note on a Householder implementation of the GMRES method , 1986 .

[16]  Eric de Sturler,et al.  A Performance Model for Krylov Subspace Methods on Mesh-Based Parallel Computers , 1996, Parallel Comput..

[17]  Miroslav Rozlozník,et al.  Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..

[18]  Sivan Toledo,et al.  Efficient out-of-core algorithms for linear relaxation using blocking covers , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[19]  John Van Rosendale Minimizing Inner Product Data Dependencies in Conjugate Gradient Iteration , 1983, ICPP.

[20]  Lothar Reichel,et al.  On the generation of Krylov subspace bases , 2012 .

[21]  Sivan Toledo,et al.  Quantitative performance modeling of scientific computations and creating locality in numerical algorithms , 1995 .

[22]  L. Reichel,et al.  A Newton basis GMRES implementation , 1994 .

[23]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[24]  W. Joubert,et al.  Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .

[25]  H. V. der Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .

[26]  Anthony T. Chronopoulos,et al.  Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..

[27]  Qiang Ye,et al.  Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems , 2000, Math. Comput..