Orbital ordering in transition-metal spinels

Transition-metal spinels (general formula AB2X4) have been, for many years, the subject of intense experimental and theoretical activity. Structurally, the most interesting feature of these systems is the fact that the B cation occupies the nodes of a pyrochlore lattice, which is known to be geometrically frustrated. Therefore, one can explore how the natural tendency of the transition metals to order in the charge, magnetic and orbital sectors is affected by geometrical frustration. Recently, orbital ordering has become a topical subject in a variety of both non-frustrated systems, such as manganites and other perovskites, and in the spinels. In this paper, I review the recent experimental activity on the subject of orbital ordering in transition-metal spinels and relate this to models of orbital ordering that are being developed by theoreticians.

[1]  H. Renevier,et al.  X-ray resonant scattering of (004n+2) forbidden reflections in spinel ferrites , 2004 .

[2]  H. Renevier,et al.  Magnetite, a model system for mixed-valence oxides, does not show charge ordering. , 2004, Physical review letters.

[3]  M. Arai,et al.  Band-Structure Theory for the Insulating Phase of the Thio-Spinel Transition-Metal Compound, CuIr2S4 , 2004 .

[4]  G. Jackeli,et al.  Valence-bond crystal in a pyrochlore antiferromagnet with orbital degeneracy. , 2004, Physical review letters.

[5]  T. Xiang,et al.  Optical study of the metal-insulator transition in CuIr 2 S 4 crystals , 2004, cond-mat/0403007.

[6]  V. Anisimov,et al.  Charge and orbital order in Fe3O4. , 2004, Physical review letters.

[7]  G. Subías,et al.  The Verwey transition: a new perspective , 2004 .

[8]  O. Tchernyshyov Structural, orbital, and magnetic order in vanadium spinels. , 2004, Physical review letters.

[9]  J. Íñiguez,et al.  Orbital and Spin Chains in ZnV2O4. , 2003, Physical review letters.

[10]  S. Okamoto,et al.  Theory of orbital state and spin interactions in ferromagnetic titanates , 2003, cond-mat/0510175.

[11]  M. Reehuis,et al.  Crystallographic and magnetic structure of ZnV$\mathsf{_2}$O$\mathsf{_4}$ , 2003 .

[12]  S. Cheong,et al.  Spin singlet formation in MgTi2O4: evidence of a helical dimerization pattern. , 2003, Physical review letters.

[13]  S. Cheong,et al.  METAL-INSULATOR TRANSITION IN CUIR2S4: XAS RESULTS ON THE ELECTRONIC STRUCTURE , 2003 .

[14]  Y. Motome,et al.  Magnetic transition and orbital degrees of freedom in vanadium spinels , 2003, cond-mat/0305269.

[15]  K. J. Thomas,et al.  Resonant x-ray diffraction of the magnetoresistant perovskite Pr0.6Ca0.4MnO3 , 2003, cond-mat/0305216.

[16]  D. Khomskii,et al.  Orbital ordering and frustrations , 2003, cond-mat/0304089.

[17]  J. Attfield,et al.  Charge ordered structure of magnetite Fe 3 O 4 below the Verwey transition , 2002 .

[18]  Volker Eyert,et al.  The metal‐insulator transitions of VO2: A band theoretical approach , 2002, Annalen der Physik.

[19]  J. P. Garrahan,et al.  Simple strong glass forming models: mean-field solution with activation , 2002, cond-mat/0209362.

[20]  S. Cheong,et al.  X-ray-Induced Disordering of the Dimerization Pattern and Apparent Low-Temperature Enhancement of Lattice Symmetry in Spinel CuIr 2 S 4 , 2002, cond-mat/0209072.

[21]  M. Isobe,et al.  Observation of Phase Transition from Metal to Spin-Singlet Insulator in MgTi2O4 with S=1/2 Pyrochlore Lattice , 2002 .

[22]  M. Onoda,et al.  A pseudotetramer in the geometrically frustrated spinel system CdV2O4 , 2002 .

[23]  S. Cheong,et al.  Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4 , 2002, Nature.

[24]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[25]  J. Attfield,et al.  Long range charge ordering in magnetite below the Verwey transition. , 2001, Physical review letters.

[26]  S. Matteo,et al.  Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V2O3 , 2001, cond-mat/0107026.

[27]  T. Sakai,et al.  X-ray diffraction study on spinel compound CuIr2S4 with metal–insulator transition , 2001 .

[28]  H. Tsunetsugu Antiferromagnetic Quantum Spins on the Pyrochlore Lattice , 2001, cond-mat/0103231.

[29]  H. Takagi,et al.  Charge Ordering in the Geometrically Frustrated Spinel AlV2O4 , 2001 .

[30]  Jonathan P. Wright,et al.  Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3O4 , 2000 .

[31]  K. Kumagai,et al.  NMR study on the metal-insulator transition of (Cu1−xNix)Ir2S4 , 2000 .

[32]  A. Burkov,et al.  Anomalous resistivity and thermopower of the spinel-type compounds CuIr 2 S 4 and CuIr 2 Se 4 , 2000 .

[33]  T. Furubayashi,et al.  METAL-INSULATOR TRANSITION AND SUPERCONDUCTIVITY IN THE SPINEL-TYPE CU(IR1-XRHX)2S4 SYSTEM , 1999 .

[34]  M. Altarelli,et al.  Orbital Occupancy Order in V2O3: Resonant X-Ray Scattering Results. , 1999 .

[35]  M. Hervieu,et al.  Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn 2 O 4 , 1998 .

[36]  T. Furubayashi,et al.  Metal-insulator transition in the spinel-type CuIr2(S1-xSex)4 system , 1998 .

[37]  A. Fujimori,et al.  Photoemission study of the metal-insulator transition in CuIr2S4 , 1997 .

[38]  Y. Ueda,et al.  Magnetic and Structural Transitions in (Li_xZn V_2O_4 with the Spinel Structure , 1997 .

[39]  M. Onoda,et al.  Electronic states of vanadium spinels MgV2O4 and ZnV2O4 , 1995 .

[40]  Takao Furubayashi,et al.  Structural and magnetic studies of metal-insulator transition in thiospinel CuIr2S4 , 1994 .

[41]  Allen,et al.  VO2: Peierls or Mott-Hubbard? A view from band theory. , 1994, Physical review letters.

[42]  T. Koetzle,et al.  Structure of magnetite (Fe3O4) below the Verwey transition temperature , 1982 .

[43]  K. Kugel,et al.  The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .

[44]  A. Freeman,et al.  Electronic structure and lattice instability of metallic VO2 , 1977 .

[45]  S. Niziol Investigation of magnetic properties of ZnV2O4 spinel , 1973 .

[46]  J. P. Remeika,et al.  CHARGE LOCALIZATION AT METAL--INSULATOR TRANSITIONS IN Ti$sub 4$O$sub 7$ AND V$sub 4$O. , 1972 .

[47]  G. Shirane,et al.  Magnetic Structures in FeCr2S4 and FeCr2O4 , 1964 .

[48]  A. Sinha,et al.  Effect of temperature on the structure of manganites , 1962 .

[49]  John B. Goodenough,et al.  Direct cation- -cation interactions in several oxides , 1960 .

[50]  P. W. Anderson,et al.  Ordering and Antiferromagnetism in Ferrites , 1956 .

[51]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[52]  E. Verwey,et al.  Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures , 1939, Nature.

[53]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[54]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[55]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[56]  M. Takano,et al.  Structure-property relationships in pyrochlores: low-temperature structures of Tl2Ru2O7-δ (δ=0.00 and 0.05) , 1999 .

[57]  O. V. Kovalev,et al.  Irreducible representations of the space groups , 1965 .

[58]  S. Westman,et al.  Note on a Phase Transition in VO2 , 1961 .