The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems
暂无分享,去创建一个
Markus Clemens | Ting-Zhu Huang | Xian-Ming Gu | Liang Li | Tingzhu Huang | M. Clemens | Liang Li | Xianming Gu
[1] Stéphane Lanteri,et al. A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations , 2013 .
[2] Thomas Weiland,et al. Iterative Methods for the Solution of Very Large Complex-Symmetric Linear Systems in Electrodynamics , 1996 .
[3] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[4] U. van Rienen,et al. Electro-quasistatic calculation of electric field strength on high-voltage insulators with an algebraic multigrid algorithm , 2003 .
[5] Liang Li,et al. Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear Systems in Electromagnetic Simulations , 2014, IEEE Transactions on Microwave Theory and Techniques.
[6] T. Sogabe,et al. A COCR method for solving complex symmetric linear systems , 2007 .
[7] M. Clemens,et al. Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .
[8] Rolf Schuhmann,et al. Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory , 1996 .
[9] Tony F. Chan,et al. A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..
[10] Thomas Weiland,et al. On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .
[11] Enrico Bertolazzi,et al. Preconditioning complex symmetric linear systems , 2014, 1405.6297.
[12] D. A. H. Jacobs,et al. A Generalization of the Conjugate-Gradient Method to Solve Complex Systems , 1986 .
[13] R. Freund,et al. Software for simplified Lanczos and QMR algorithms , 1995 .
[14] V. G. Kuznetsov,et al. Solution of systems of linear equations , 1967 .
[15] Thomas Weiland,et al. Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems , 1998 .
[16] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[17] Thomas Weiland,et al. Simulation of low-frequency fields on high-voltage insulators with light contaminations , 1996 .
[18] Ursula van Rienen,et al. Numerical Methods in Computational Electrodynamics - Linear Systems in Practical Applications , 2001, Lecture Notes in Computational Science and Engineering.
[19] 知広 曽我部. Extensions of the conjugate residual method , 2006 .
[20] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[21] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[22] Dianne P. O'Leary,et al. Eigenanalysis of some preconditioned Helmholtz problems , 1999, Numerische Mathematik.
[23] Sebastian Schops,et al. Reduction of Linear Subdomains for Non-Linear Electro-Quasistatic Field Simulations , 2013, IEEE Transactions on Magnetics.
[24] Yong Zhang,et al. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems , 2009, J. Comput. Phys..
[25] Peter Deuflhard,et al. Numerische Mathematik II , 1994 .
[26] Yong Zhang,et al. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems , 2010, Comput. Phys. Commun..
[27] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[28] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[29] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[30] Simon R. Arridge,et al. Preconditioning of complex symmetric linear systems with applications in optical tomography , 2013 .
[31] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .