The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems

Abstract Frequency domain formulations of computational electromagnetic problems often require the solutions of complex-valued non-Hermitian systems of equations, which are still symmetric. For this kind of problems a whole class of sub-variant solver methods derived from the complex-valued Bi-Conjugate Gradient method is available. This class of methods contains established iterative methods as the Conjugate Orthogonal Conjugate Gradient (COCG) method, Bi-Conjugate Gradient Conjugate Residual (BiCGCR) method and Conjugate A -Orthogonal Conjugate Residual (COCR) method. The mathematical equivalence of the BiCGCR method and COCR method is shown and preconditioned variants of the various solvers are derived. An efficient kind of two-step preconditioning technique is also proposed. Numerical experiments involving e.g. electro-quasistatic frequency domain simulation are employed to show the difference in the convergence behaviors of these iterative methods and effectiveness of the two-step preconditioning techniques.

[1]  Stéphane Lanteri,et al.  A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations , 2013 .

[2]  Thomas Weiland,et al.  Iterative Methods for the Solution of Very Large Complex-Symmetric Linear Systems in Electrodynamics , 1996 .

[3]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[4]  U. van Rienen,et al.  Electro-quasistatic calculation of electric field strength on high-voltage insulators with an algebraic multigrid algorithm , 2003 .

[5]  Liang Li,et al.  Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear Systems in Electromagnetic Simulations , 2014, IEEE Transactions on Microwave Theory and Techniques.

[6]  T. Sogabe,et al.  A COCR method for solving complex symmetric linear systems , 2007 .

[7]  M. Clemens,et al.  Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .

[8]  Rolf Schuhmann,et al.  Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory , 1996 .

[9]  Tony F. Chan,et al.  A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..

[10]  Thomas Weiland,et al.  On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .

[11]  Enrico Bertolazzi,et al.  Preconditioning complex symmetric linear systems , 2014, 1405.6297.

[12]  D. A. H. Jacobs,et al.  A Generalization of the Conjugate-Gradient Method to Solve Complex Systems , 1986 .

[13]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[14]  V. G. Kuznetsov,et al.  Solution of systems of linear equations , 1967 .

[15]  Thomas Weiland,et al.  Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems , 1998 .

[16]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[17]  Thomas Weiland,et al.  Simulation of low-frequency fields on high-voltage insulators with light contaminations , 1996 .

[18]  Ursula van Rienen,et al.  Numerical Methods in Computational Electrodynamics - Linear Systems in Practical Applications , 2001, Lecture Notes in Computational Science and Engineering.

[19]  知広 曽我部 Extensions of the conjugate residual method , 2006 .

[20]  H. V. D. Vorst,et al.  A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .

[21]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[22]  Dianne P. O'Leary,et al.  Eigenanalysis of some preconditioned Helmholtz problems , 1999, Numerische Mathematik.

[23]  Sebastian Schops,et al.  Reduction of Linear Subdomains for Non-Linear Electro-Quasistatic Field Simulations , 2013, IEEE Transactions on Magnetics.

[24]  Yong Zhang,et al.  Lanczos-type variants of the COCR method for complex nonsymmetric linear systems , 2009, J. Comput. Phys..

[25]  Peter Deuflhard,et al.  Numerische Mathematik II , 1994 .

[26]  Yong Zhang,et al.  Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems , 2010, Comput. Phys. Commun..

[27]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[28]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  Simon R. Arridge,et al.  Preconditioning of complex symmetric linear systems with applications in optical tomography , 2013 .

[31]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .