Total mean curvature of the boundary and nonnegative scalar curvature fill-ins

Abstract In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, completely solving an open problem due to Gromov (see Question 1.1). Then we introduce a fill-in invariant (see Definition 1.2) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for AH manifolds implies that for AF manifolds via this fill-in invariant. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromov’s two conjectures formulated in [M. Gromov, Four lectures on scalar curvature, preprint 2019] (see Conjecture 1.1 and Conjecture 1.2 below).

[1]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[2]  R. Bartnik Quasi-spherical metrics and prescribed scalar curvature , 1993 .

[3]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[4]  S. Bando,et al.  On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth , 1989 .

[5]  Guodong Wei,et al.  On the fill-in of nonnegative scalar curvature metrics , 2019, Mathematische Annalen.

[6]  Peter M. Topping,et al.  MEAN CURVATURE FLOW AND GEOMETRIC INEQUALITIES , 1998 .

[7]  Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Chand,et al.  On Convex Polyhedra , 1970 .

[9]  Yuguang Shi,et al.  Large-sphere and small-sphere limits of the Brown-York mass , 2007, 0711.2552.

[10]  S. Yau,et al.  On the structure of manifolds with positive scalar curvature , 1979 .

[11]  Yuguang Shi,et al.  On Geometric Problems Related to Brown-York and Liu-Yau Quasilocal Mass , 2009, 0906.5451.

[12]  M. Gromov STABLE MAPPINGS OF FOLIATIONS INTO MANIFOLDS , 1969 .

[13]  Xiaodong Wang The Mass of Asymptotically Hyperbolic Manifolds , 2001 .

[14]  Yu. D. Burago,et al.  The Geometry of Surfaces in Euclidean Spaces , 1992 .

[15]  R. Arnowitt,et al.  Coordinate invariance and energy expressions in general relativity , 1961 .

[16]  T. Colding Ricci curvature and volume convergence , 1997 .

[17]  Christos Mantoulidis,et al.  Capacity, quasi-local mass, and singular fill-ins , 2018, Journal für die reine und angewandte Mathematik (Crelles Journal).

[18]  Peter M. Topping,et al.  Relating diameter and mean curvature for submanifolds of Euclidean space , 2008 .

[19]  Positive Mass Theorem on Manifolds admitting Corners along a Hypersurface , 2002, math-ph/0212025.

[20]  S. Yau,et al.  The energy and the linear momentum of space-times in general relativity , 1981 .

[21]  S. Yau,et al.  A generalization of Liu-Yau's quasi-local mass , 2006, math/0602321.

[22]  L. Nirenberg The Weyl and Minkowski problems in differential geometry in the large , 1953 .

[23]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[24]  M. Gromov Scalar Curvature of Manifolds with Boundaries: Natural Questions and Artificial Constructions , 2018, 1811.04311.

[25]  Positive Mass Theorem and the Boundary Behaviors of Compact Manifolds with Nonnegative Scalar Curvature , 2002, math/0301047.

[26]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[27]  Yanyan Li,et al.  The Weyl problem with nonnegative Gauss curvature , 1994 .

[28]  R. Bamler A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature , 2015, 1505.00088.

[29]  E. Witten A new proof of the positive energy theorem , 1981 .

[30]  M. Gromov Dirac and Plateau billiards in domains with corners , 2014, 1811.04318.

[31]  J. Qing,et al.  A Positive Mass Theorem on Asymptotically Hyperbolic Manifolds with Corners along a Hypersurface , 2007, 0711.0539.

[32]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[33]  Yuguang Shi,et al.  Scalar curvature and singular metrics , 2016, 1611.04056.

[34]  P. Alestalo,et al.  Isometric approximation , 2001 .

[35]  Xiaodong Wang,et al.  Boundary Effect of Ricci Curvature , 2014, 1408.2711.

[36]  Jeffrey L. Jauregui Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass , 2011, 1106.4339.

[37]  Yuguang Shi,et al.  Quasi-Spherical Metrics and Applications , 2004 .

[38]  Yuguang Shi,et al.  Positivity of Brown–York mass with quasi-positive boundary data , 2019, Pure and Applied Mathematics Quarterly.

[39]  Armando J. Cabrera Pacheco,et al.  Higher dimensional black hole initial data with prescribed boundary metric , 2015, 1505.01800.

[40]  J. D. Brown,et al.  Quasilocal energy in general relativity , 1991 .

[41]  M. Simon,et al.  Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature , 2002 .

[42]  L. Santaló Integral geometry and geometric probability , 1976 .

[43]  Dan A. Lee,et al.  The spacetime positive mass theorem in dimensions less than eight , 2011, 1110.2087.

[44]  Christos Mantoulidis,et al.  Total Mean Curvature, Scalar Curvature, and a Variational Analog of Brown–York Mass , 2016, 1604.00927.

[45]  M. Gromov Four Lectures on Scalar Curvature , 2019, 1908.10612.

[46]  Mass Under the Ricci Flow , 2005, math/0510083.

[47]  J. Lohkamp Scalar curvature and hammocks , 1999 .

[48]  Jeff Cheeger,et al.  $C^\alpha$-compactness for manifolds with Ricci curvature and injectivity radius bounded below , 1992 .

[49]  F. W. Warner,et al.  Scalar curvature and conformal deformation of Riemannian structure , 1975 .

[50]  I. Belegradek Gromov-Hausdorff hyperspace of nonnegatively curved $2$-spheres , 2017, 1705.01223.

[51]  E. Delay,et al.  The hyperbolic positive energy theorem , 2019, 1901.05263.

[52]  Michael Taylor Existence and regularity of isometries , 2006 .

[53]  Yuguang Shi,et al.  Rigidity of compact manifolds and positivity of quasi-local mass , 2007 .

[54]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[55]  Rigidity and Positivity of Mass for Asymptotically Hyperbolic Manifolds , 2007, math/0703259.

[56]  S. Yau,et al.  Positive scalar curvature and minimal hypersurface singularities , 2017, Surveys in Differential Geometry.