Overlaying social information: The effects on users' search and information-selection behavior

Abstract Previous research investigated how to leverage the new type of social data available on the web, e.g., tags, ratings and reviews, in recommending and personalizing information. However, previous works mainly focused on predicting ratings using collaborative filtering or quantifying personalized ranking quality in simulations. As a consequence, the effect of social information in user's information search and information-selection behavior remains elusive. The objective of our research is to investigate the effects of social information on users’ interactive search and information-selection behavior. We present a computational method and a system implementation combining different graph overlays: social, personal and search-time user input that are visualized for the user to support interactive information search. We report on a controlled laboratory experiment, in which 24 users performed search tasks using three system variants with different graphs as overlays composed from the largest publicly available social content and review data from Yelp: personal preferences, tags combined with personal preferences, and tags and social ratings combined with personal preferences. Data comprising search logs, questionnaires, simulations, and eye-tracking recordings show that: 1) the search effectiveness is improved by using and visualizing the social rating information and the personal preference information as compared to content-based ranking. 2) The need to consult external information before selecting information is reduced by the presentation of the effects of different overlays on the search results. Search effectiveness improvements can be attributed to the use of social rating and personal preference overlays, which was also confirmed in a follow-up simulation study. With the proposed method we demonstrate that social information can be incorporated to the interactive search process by overlaying graphs representing different information sources. We show that the combination of social rating information and personal preference information improves search effectiveness and reduce the need to consult external information. Our method and findings can inform the design of interactive search systems that leverage the information available on the social web.

[1]  Peter Brusilovsky,et al.  Adaptive visualization for exploratory information retrieval , 2013, Inf. Process. Manag..

[2]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[3]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[5]  Yizhou Sun,et al.  Mining heterogeneous information networks: a structural analysis approach , 2013, SKDD.

[6]  Li Chen,et al.  A user-centric evaluation framework for recommender systems , 2011, RecSys '11.

[7]  Dorota Glowacka,et al.  Directing exploratory search with interactive intent modeling , 2013, CIKM.

[8]  Susan T. Dumais,et al.  Personalizing search via automated analysis of interests and activities , 2005, SIGIR '05.

[9]  Fabio Gasparetti,et al.  Personalization and Context-awareness in Social Local Search: State-of-the-art and Future Research Challenges , 2017, Pervasive Mob. Comput..

[10]  Bart P. Knijnenburg,et al.  Explaining the user experience of recommender systems , 2012, User Modeling and User-Adapted Interaction.

[11]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[12]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[13]  Jingjing Liu Personalizing information retrieval using task features, topic knowledge, and task product , 2009, Bull. IEEE Tech. Comm. Digit. Libr..

[14]  Giuseppe Sansonetti,et al.  Social semantic query expansion , 2013, ACM Trans. Intell. Syst. Technol..

[15]  Aya Soffer,et al.  Social search and discovery using a unified approach , 2009, HT '09.

[16]  Ed H. Chi,et al.  Information Seeking Can Be Social , 2009, Computer.

[17]  Christian Bauckhage,et al.  I tag, you tag: translating tags for advanced user models , 2010, WSDM '10.

[18]  David Carmel,et al.  Social media recommendation based on people and tags , 2010, SIGIR.

[19]  Rakesh Agrawal,et al.  Whither Social Networks for Web Search? , 2015, KDD.

[20]  Nuria Oliver,et al.  SocialSearchBrowser: a novel mobile search and information discovery tool , 2010, IUI '10.

[21]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[22]  Susan T. Dumais,et al.  Potential for personalization , 2010, TCHI.

[23]  Jon G. Rokne,et al.  On personalizing Web search using social network analysis , 2015, Inf. Sci..

[24]  Rong Hu,et al.  A Study on User Perception of Personality-Based Recommender Systems , 2010, UMAP.

[25]  Dorota Glowacka,et al.  Intentradar: search user interface that anticipates user's search intents , 2014, CHI Extended Abstracts.

[26]  Peter Brusilovsky,et al.  Adaptive Visualization of Search Results: Bringing User Models to Visual Analytics , 2009, Inf. Vis..

[27]  Young An Kim,et al.  Topic-Driven SocialRank: Personalized search result ranking by identifying similar, credible users in a social network , 2013, Knowl. Based Syst..

[28]  Tuukka Ruotsalo,et al.  Visual Re-Ranking for Multi-Aspect Information Retrieval , 2017, CHIIR.

[29]  Yunming Ye,et al.  MultiRank: co-ranking for objects and relations in multi-relational data , 2011, KDD.

[30]  Nadia Magnenat-Thalmann,et al.  Time-aware point-of-interest recommendation , 2013, SIGIR.

[31]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[32]  Dorota Glowacka,et al.  Directing exploratory search: reinforcement learning from user interactions with keywords , 2013, IUI '13.

[33]  Gerhard Weikum,et al.  Task-aware search personalization , 2008, SIGIR '08.

[34]  Mao Ye,et al.  Exploiting geographical influence for collaborative point-of-interest recommendation , 2011, SIGIR.

[35]  Jaakko Peltonen,et al.  Topic-Relevance Map: Visualization for Improving Search Result Comprehension , 2017, IUI.

[36]  Hakim Hacid,et al.  Sopra: a new social personalized ranking function for improving web search , 2013, SIGIR.

[37]  Barry Smyth,et al.  Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine , 2004, User Modeling and User-Adapted Interaction.

[38]  晴美 村上 集会報告 ACM SIGIR 2017:第40回 International ACM SIGIR conference on research and development in information retrieval , 2017 .

[39]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[40]  Martin Ester,et al.  RecSys challenge 2013 , 2013, RecSys.

[41]  Michael Gamon,et al.  Social annotations: utility and prediction modeling , 2012, SIGIR '12.

[42]  Samuel Kaski,et al.  Interactive intent modeling , 2014, Commun. ACM.

[43]  Barry Smyth,et al.  A Community-Based Approach to Personalizing Web Search , 2007, Computer.

[44]  Nava Tintarev,et al.  Evaluating the effectiveness of explanations for recommender systems , 2012, User Modeling and User-Adapted Interaction.

[45]  Zoltán Gyöngyi,et al.  Social annotations in web search , 2012, CHI.

[46]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[47]  Diogo Cabral,et al.  Flexible entity search on surfaces , 2016, MUM.

[48]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[49]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[50]  Dominik Kowald,et al.  Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems , 2016, J. Web Sci..

[51]  Roi Blanco,et al.  Effective and Efficient Entity Search in RDF Data , 2011, SEMWEB.

[52]  Raymond Y. K. Lau,et al.  Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy , 2016, Inf. Process. Manag..

[53]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[54]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[55]  Mao Ye,et al.  Location recommendation for location-based social networks , 2010, GIS '10.

[56]  F. Maxwell Harper,et al.  User perception of differences in recommender algorithms , 2014, RecSys '14.

[57]  Yvonne Kammerer,et al.  Signpost from the masses: learning effects in an exploratory social tag search browser , 2009, CHI.

[58]  Michelle X. Zhou,et al.  Proceedings of the 22nd International Conference on Intelligent User Interfaces , 2017 .

[59]  Franca Garzotto,et al.  User profiling vs. accuracy in recommender system user experience , 2012, AVI.

[60]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[61]  Ed H. Chi,et al.  Perception and understanding of social annotations in web search , 2013, WWW.

[62]  Pattie Maes,et al.  Footprints: history-rich tools for information foraging , 1999, CHI '99.

[63]  Özgür Ulusoy,et al.  Integrating social features into mobile local search , 2016, J. Syst. Softw..

[64]  Wolfgang Nejdl,et al.  Exploiting the wisdom of the crowds for characterizing and connecting heterogeneous resources , 2014, HT.

[65]  Qi Li,et al.  Personalized web exploration with task models , 2008, WWW.

[66]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[67]  Silviu Maniu,et al.  Network-aware search in social tagging applications: instance optimality versus efficiency , 2013, CIKM.

[68]  Hakim Hacid,et al.  Using social annotations to enhance document representation for personalized search , 2013, SIGIR.

[69]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[70]  Barry Smyth,et al.  Collecting community wisdom: integrating social search & social navigation , 2007, IUI '07.

[71]  Daniel A. Keim,et al.  On Knowledge Discovery and Data Mining , 1997 .

[72]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[73]  Hakim Hacid,et al.  PerSaDoR: Personalized social document representation for improving web search , 2016, Inf. Sci..