On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic Deep Water. A steady-state deep-water temperature is achieved such that the Antarctic surface can barely undergo convection. A two-box model is used to illustrate this feedback loop in its simplest expression and to develop basic concepts, such as the bounds on the operation of this loop. The model illustrates the possible dominating influence of Antarctic upwelling rate and Antarctic freshwater balance on global deep-water temperatures.

[1]  G. Haug,et al.  The polar ocean and glacial cycles in atmospheric CO2 concentration , 2010, Nature.

[2]  Gregory C. Johnson,et al.  Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes , 2008 .

[3]  A. Weaver,et al.  CO2 threshold for millennial-scale oscillations in the climate system: implications for global warming scenarios , 2008 .

[4]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[5]  A. Gordon,et al.  A Possible Link between the Weddell Polynya and the Southern Annular Mode , 2007 .

[6]  A. Verdière,et al.  A Simple Model of Millennial Oscillations of the Thermohaline Circulation , 2007 .

[7]  Florian Sévellec,et al.  Bifurcation Structure of Thermohaline Millennial Oscillations , 2006 .

[8]  D. Olbers,et al.  A Model of the Zonally Averaged Stratification and Overturning in the Southern Ocean , 2005 .

[9]  J. Kämpf Cascading-driven upwelling in submarine canyons at high latitudes , 2005 .

[10]  M. Visbeck,et al.  Widespread Intense Turbulent Mixing in the Southern Ocean , 2004, Science.

[11]  A. Hirst,et al.  Long‐term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming , 2003 .

[12]  Paul E. Robbins,et al.  Data-Based Meridional Overturning Streamfunctions for the Global Ocean , 2003 .

[13]  J. Toggweiler,et al.  Representation of the carbon cycle in box models and GCMs, 2, Organic pump , 2003 .

[14]  A. Weaver,et al.  On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation , 2002 .

[15]  D. Schrag,et al.  The Salinity, Temperature, and δ18O of the Glacial Deep Ocean , 2002, Science.

[16]  Kun Yang,et al.  On the Role of Sea Ice and Convection in a Global Ocean Model , 2002 .

[17]  S. Jacobs,et al.  Cooling and ventilating the Abyssal Ocean , 2001 .

[18]  E. Tziperman,et al.  Physical mechanisms behind biogeochemical glacial‐interglacial CO2 variations , 2001 .

[19]  R. Haarsma,et al.  Rapid transitions and ultra-low frequency behaviour in a 40 kyr integration with a coupled climate model of intermediate complexity , 2001 .

[20]  B. Stephens,et al.  Erratum: ``Antarctic sea ice and the control of Pleistocene climate instability'' , 2001 .

[21]  K. Speer,et al.  The Diabatic Deacon Cell , 2000 .

[22]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[23]  A. Gnanadesikan,et al.  A simple predictive model for the structure of the oceanic pycnocline , 1999, Science.

[24]  David W. Pierce,et al.  Competing Roles of Heat and Freshwater Flux in Forcing Thermohaline Oscillations , 1995 .

[25]  J. Toggweiler,et al.  Effect of Sea Ice on the Salinity of Antarctic Bottom Waters , 1995 .

[26]  Reindert J. Haarsma,et al.  Variability and Multiple Equilibria of the Thermohaline Circulation Associated with Deep-Water Formation , 1994 .

[27]  H. Hellmer,et al.  Deep and Bottom Water of the Weddell Sea's Western Rim , 1993, Science.

[28]  E. Sarachik,et al.  Thermohaline Oscillations Induced by Strong Steady Salinity Forcing of Ocean General Circulation Models , 1993 .

[29]  G. Walin On the formation of ice on deep weakly stratified water , 1993 .

[30]  S. Jacobs On the nature and significance of the Antarctic Slope Front , 1991 .

[31]  A. Gordon,et al.  Southern ocean winter mixed layer , 1990 .

[32]  D. Martinson Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation , 1990 .

[33]  P. Welander A simple heat-salt oscillator , 1982 .

[34]  Arnold L. Gordon,et al.  Seasonality of Southern Ocean sea ice , 1981 .

[35]  E. Carmack,et al.  Frontal zone mixing and Antarctic Bottom water formation in the southern Weddell Sea , 1976 .

[36]  J. F. Festa,et al.  A Numerical Model of Convection Driven by a Surface Stress and Non-Uniform Horizontal Heating , 1972 .

[37]  R. Haney Surface Thermal Boundary Condition for Ocean Circulation Models , 1971 .

[38]  H. Stommel,et al.  ON THE SMALLNESS OF SINKING REGIONS IN THE OCEAN. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Bolin,et al.  On the abyssal circulation of the world ocean—IV. Origin and rate of circulation of deep ocean water as determined with the aid of tracers , 1961 .

[40]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .

[41]  J. Marshall,et al.  The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current , 2002 .

[42]  B.,et al.  Effect of Drake Passage on the global thermohaline circulation , 1994 .

[43]  H. Zwally,et al.  Antarctic Sea Ice, 1973-1976: Satellite Passive-Microwave Observations , 1983 .