Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA]

The genome evolution of land plants is characterized by multiple waves of whole-genome duplications (WGDs). This cytogenetic and molecular phylogenetic analysis revealed an unexpected WGD event in the ancestry of Australian crucifer species with diploid-like chromosome complements. Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred ~6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.

[1]  Michael S. Barker,et al.  Paleopolyploidy in the Brassicales: Analyses of the Cleome Transcriptome Elucidate the History of Genome Duplications in Arabidopsis and Other Brassicales , 2009, Genome biology and evolution.

[2]  J. Chris Pires,et al.  Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes , 2009, Chromosome Research.

[3]  Kentaro K Shimizu,et al.  The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri , 2009, Molecular ecology.

[4]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[5]  M. Lysak,et al.  A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. , 2009, Annals of botany.

[6]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[7]  W. Jin,et al.  Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation , 2009, Proceedings of the National Academy of Sciences.

[8]  Itay Mayrose,et al.  The frequency of polyploid speciation in vascular plants , 2009, Proceedings of the National Academy of Sciences.

[9]  M. Chase,et al.  Genome size diversity in orchids: consequences and evolution. , 2009, Annals of botany.

[10]  James A. Birchler,et al.  Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize[W] , 2009, The Plant Cell Online.

[11]  D. Babula-Skowrońska,et al.  Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. , 2009, Genome.

[12]  H. Hurka,et al.  Biogeography and Phylogeny of Cardamine (Brassicaceae)1 , 2009 .

[13]  T. Gojobori,et al.  Welcome to Genome Biology and Evolution , 2009, Genome biology and evolution.

[14]  P. Lockhart,et al.  A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. , 2009, Molecular phylogenetics and evolution.

[15]  I. Al‐Shehbaz,et al.  Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae , 2009 .

[16]  Steven Maere,et al.  Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event , 2009, Proceedings of the National Academy of Sciences.

[17]  O. Jaillon,et al.  "Changing by doubling", the impact of Whole Genome Duplications in the evolution of eukaryotes. , 2009, Comptes rendus biologies.

[18]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[19]  Marta Matvienko,et al.  Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. , 2008, Molecular biology and evolution.

[20]  D. Soltis,et al.  Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae) , 2008, PloS one.

[21]  M. Lysak,et al.  Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae)[W] , 2008, The Plant Cell Online.

[22]  M. Donoghue,et al.  Allopolyploid speciation in Persicaria (Polygonaceae): Insights from a low-copy nuclear region , 2008, Proceedings of the National Academy of Sciences.

[23]  S. Bottani,et al.  Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. , 2008, Trends in genetics : TIG.

[24]  S. Hiscock,et al.  Review Genomic Clues to the Evolutionary Success of Polyploid Plants , 2022 .

[25]  M. Guerra Chromosome numbers in plant cytotaxonomy: concepts and implications , 2008, Cytogenetic and Genome Research.

[26]  J. Doležel,et al.  Cytogenetics of Festulolium (Festuca × Lolium hybrids) , 2008, Cytogenetic and Genome Research.

[27]  Andrew H. Paterson,et al.  Synteny and Collinearity in Plant Genomes , 2008, Science.

[28]  Stephen M. Mount,et al.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) , 2008, Nature.

[29]  D. Flagiello,et al.  SCALLOPED Interacts with YORKIE, the Nuclear Effector of the Hippo Tumor-Suppressor Pathway in Drosophila , 2008, Current Biology.

[30]  J. Salse,et al.  Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution , 2008 .

[31]  M. Freeling,et al.  The evolutionary position of subfunctionalization, downgraded. , 2008, Genome dynamics.

[32]  N. Roosens,et al.  The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana , 2008, Plant and Soil.

[33]  Priya Panjabi,et al.  Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes , 2008, BMC Genomics.

[34]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[35]  J. Pires,et al.  Genomic Changes in Resynthesized Brassica napus and Their Effect on Gene Expression and Phenotype[W][OA] , 2007, The Plant Cell Online.

[36]  P. Bureš,et al.  Ancestral Chromosomal Blocks Are Triplicated in Brassiceae Species with Varying Chromosome Number and Genome Size1 , 2007, Plant Physiology.

[37]  L. Rieseberg,et al.  Plant Speciation , 2007, Science.

[38]  A. Franzke,et al.  Gone with the bird: Late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants , 2007 .

[39]  Francesca Antonacci,et al.  Evolutionary Formation of New Centromeres in Macaque , 2007, Science.

[40]  T. Mitchell-Olds,et al.  Comparative Genetic Mapping in Boechera stricta, a Close Relative of Arabidopsis1[C][W][OA] , 2007, Plant Physiology.

[41]  Douglas E. Soltis,et al.  Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? , 2007 .

[42]  R. Veitia,et al.  The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics , 2007, The Plant Cell Online.

[43]  K. H. Wolfe,et al.  Rearrangement rate following the whole-genome duplication in teleosts. , 2006, Molecular biology and evolution.

[44]  Ingo Schubert,et al.  Chromosome evolution. , 2007, Current opinion in plant biology.

[45]  T. Mitchell-Olds,et al.  The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. , 2006, Trends in plant science.

[46]  Brian C. Thomas,et al.  Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. , 2006, Genome research.

[47]  Piotr A. Ziolkowski,et al.  Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. , 2006, The Plant journal : for cell and molecular biology.

[48]  E. Kellogg,et al.  Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview , 2006, Plant Systematics and Evolution.

[49]  D. Soltis,et al.  Widespread genome duplications throughout the history of flowering plants. , 2006, Genome research.

[50]  Jung Sun Kim,et al.  Sequence-Level Analysis of the Diploidization Process in the Triplicated FLOWERING LOCUS C Region of Brassica rapa[W][OA] , 2006, The Plant Cell Online.

[51]  B. Haas,et al.  Comparative Genomics of Brassica oleracea and Arabidopsis thaliana Reveal Gene Loss, Fragmentation, and Dispersal after Polyploidy[W][OA] , 2006, The Plant Cell Online.

[52]  Thomas Mitchell-Olds,et al.  Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae[W] , 2006, The Plant Cell Online.

[53]  K. McBreen,et al.  Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  F. Han,et al.  High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Steven Maere,et al.  Genome duplication and the origin of angiosperms. , 2005, Trends in ecology & evolution.

[56]  L. Lukens,et al.  Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana , 2005, Genetics.

[57]  R. O’Neill,et al.  Retention of latent centromeres in the Mammalian genome. , 2005, The Journal of heredity.

[58]  M. Koch,et al.  Chromosome triplication found across the tribe Brassiceae. , 2005, Genome Research.

[59]  Jessica A Schlueter,et al.  Mining EST databases to resolve evolutionary events in major crop species. , 2004, Genome.

[60]  E. Eichler,et al.  Recurrent sites for new centromere seeding. , 2004, Genome research.

[61]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[62]  Robert W. Taylor,et al.  Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n=1 , 1989, Chromosoma.

[63]  L. Rieseberg,et al.  Likely multiple origins of a diploid hybrid sunflower species , 2002, Molecular ecology.

[64]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[65]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[66]  M. Gandolfo,et al.  A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). , 1998, American journal of botany.

[67]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[68]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[69]  U. Lagercrantz,et al.  Comparative genome mapping in Brassica. , 1996, Genetics.

[70]  D. Stevenson,et al.  KARYOLOGY AND PHYLOGENY OF SOME MESOAMERICAN SPECIES OF ZAMIA (ZAMIACEAE) , 1996 .

[71]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[72]  D C Ward,et al.  Origin of human chromosome 2: an ancestral telomere-telomere fusion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Baldini,et al.  Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. , 1991, Nucleic acids research.

[74]  B L Trus,et al.  Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. , 1991, Journal of structural biology.

[75]  W. R. Anderson,et al.  An Integrated System of Classification of Flowering Plants , 1982 .

[76]  E. R. Sears,et al.  A Transmissible Dicentric Chromosome. , 1952, Genetics.

[77]  Yasuko Takahashi,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2022 .